
,

MACHINE CONTROLLER CP-9200SH
/- PROGRAMMING MANUAL

MANUAL NO. SIE-C879-40.36

This Programming Manual provides descriptions on the programming language which is
essential for preparing the software for the Machine Controller CP-9200SH.

In this manual, "CP-717" refers to Control Pack CP-717, which is one of the peripheral devices.

Listed below are other documents relevant to the CP-9200SH. Please refer to these materials
also.

Name of Document

FDS System Installation Manual
Control Pack CP-717 Operation Manual (Vol.1)
Control Pack CP-717 Operation Manual (Vo1.2)
Control Pack CP-717 Instructions
CP-9200SH Brochure

CP-9200SH Catalog
Machine Controller CP-9200SH User's Manual

Machine Controller CP-9200SH S e ~ o Controller User's Manual

TABLE OF CONTENTS

1 INTRODUCTION TOiPROGRAMMING 1-1
1.1 Programming Languages 1-2

2 HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS = 2-1
2.1 Types and Priority Levels of Parent Drawings 2-2
2.2 Execution Control of Parent Drawings 2-3

2.2.1 Execution Control of Parent Drawings 2-3
2.2.2 Scheduling of the Execution of Scan Process Drawings 2-3

2.3 Hierarchical Structure of Drawings 2-4
2.3.1 Exe~ution of Drawings 2-4
2.3.2 Execution of Process of Drawings 2-5 -

2.4 Functions 2-6
2.4.1 Function Dekition 2-6
2.4.2 User Function Preparation Procedure 2-7

3 REGISTER MANAGEMENT METHOD 3-1
3.1 Register Designation Method 3-2
3.2 Data Types 3-3
3.3 Types of Registers 3-5

3.3.1 DWG Registers 3-5
3.3.2 Function Registers 3-6
3.3.3 CPU Internal Registers 3-6
3.3.4 Subscripts i and j 3-7

(1) When a Subscript is Attached to Bit Type Data 3-7
(2) ,When a Subscript is Attached to Integer Type Data 3-7
(3) When a Subscript is Attached to Double-Length Integer Type Data 3-7
(4) When a Subscript is Attached to Real Number Type Data 3-7
(5) Example of Program Using a Subscript 3-7

3.3.5 Function UO and Function Registers 3-8
3.3.6 Programs and Register Referencing Ranges 3-9

3.4 Symbol Management 3-10
3.4.1 Symbol Management in the DWG's 3-10
3.4.2 Symbol Management in the Functions 3-10

3.5 Upward Linking of Symbols and Automatic Number Allocation 3-11
3.5.1 Upward Linking of Symbols 3-11
3.5.2 Automatic Register Number Allocation 3-11

4 ' BASIC INSTRUCTIONS 4-1
4.1 Instruction with [I 4-3
4.2 Program Control Instructions 4-4

4.2.1 Child Drawing Referencing Instruction (SEE) 4-4
4.2.2 FOR Structure Statement 4-5
4.2.3 WHILE Structure Statement 4-6
4.2.4 IF Structure Statement 4-8

(1) IF Structure Statement - 1 4-8 . ,
(2) IF Structure Statement - 2 4-9

4.2.5 Function Referencing Instruction (FSTART) 4-10
4.2.6 Function Input Instruction (FIN) 4-11
4.2.7 Function Output Instruction (FOUT) 4-12
4.2.8 Comment Instruction (COMMENT) 4-14
4.2.9 Expansion Program,Execution Instruction (XCALL) 4-16

4.3 Direct 110 Instructions 4-17
4.3.1 Continuous Execution Type Direct Input Instruction (INS) 4-17
4.3.2 Continuous Execution Type Direct Output Instruction (OUTS) 4-19

TABLE OF CONTENTS

4.4 Sequence Circuit Instructions 4-20
4.4.1 NO Contact Instruction (--1 b-) 4-20
4.4.2 NC Contact Instruction (+) 4-21
4.4.3 Coil Instruction (-0-i) 4-21
4.4.4 Set Coil I Reset Coil Instruction (-(SH, -(RH) 4-22
4.4.5 Rising Pulse Instruction (-J-) 4-23
4.4.6 Falling Pulse Instruction (-f--) 4-24
4.4.7 On-delay Timer Instruction: Unit of measurement=0.01 seconds (7 J-) 4-25
4.4.8 Off-delay Timer Instruction: Unit of measurement=O.Ol seconds (-1 3) 4-27
4.4.9 On-delay Timer Instruction: Unit of measurement=l seconds (F)) 4-29
4.4.10 Off-delay Timer Instruction: Unit of measurement=l seconds ({ S,) 4-31

4.5 Logical Operation Instructions 4-34
4.5.1 AND Instruction 4-34
4.5.2 OR Instruction 4-35
4.5.3 XOR Instruction 4-35

4.6 Numerical Operation Instructions 4-36
4.6.1 Integer Type Entry Instruction (I-) 4-36
4.6.2 Real Number Type Entry Instruction (IF) 4-37
4.6.3 Storage Instruction (-) 4-38
4.6.4 Addition Instruction (+) 4-39
4.6.5 Subtraction Instruction (-) 4-40
4.6.6 Extended Addition Instruction (++) 4-41
4.6.7 Extended Subtraction Instruction (--) 4-42
4.6.8 Multiplication Instruction (X) 4-43
4.6.9 Division Instruction (+) 4-44
4.6.10 MOD Instruction 4-45
4.6.11 REM Instruction 4-45
4.6.12 INC Instruction 4-46
4.6.13 DEC Instruction 4-47
4.6.14 Time Add Instruction W D) 4-48
4.6.15 Time Subtraction Instruction (TMSUB) 4-49
4.6.16 Time Spend Instruction (SPEND) 4-50

4.7 Numerical Conversion Instructions 4-52
4.7.1 INV Instruction 4-52
4.7.2 COM Instruction 4-53
4.7.3 ABS Instruction 4-53
4.7.4 BIN Instruction 4-54
4.7.5 BCD Instruction 4-54
4.7.6 PARITY Instruction 4-55
4.7.7 ASCII Instruction 4-55
4.7.8 BINASC Instruction 4-56
4.7.9 ASCBIN Instruction 4-57

4.8 Number Comparison Instructions 4-58
4.8.1 Com~arison Instructions 4-58
4.8.2 ~ a n g e Check Instruction (RCHK) 4-60

4.9 Data Operation Instructions 4-62
4.9.1 ROTL Instruction and ROTR Instruction 4-62
4.9.2 MOVB Instruction 4-63
4.9.3 MOVW Instruction 4-65
4.9.4 XCHG Snstruction 4-66
4.9.5 SETW Snstruction 4-67
4.9.6 BEXTD Instruction 4-68
4.9.7 BPRESS Instruction 4-69
4.9.8 ' BSRCH Instruction 4-70
4.9.9 SORT Instruction 4-71
4.9.10 SHETL Instruction and SHFI'R Instruction 4-72
4.9.11 COPYW Instruction 4-73
4.9.12 BSWAP Instruction 4-74

4.10 Basic Function Instructions 4-75
4.10.1 SQRT Instruction 4-75
4.10.2 SIN Instruction 4-76
4.10.3 COS Instruction 4-77
4.10.4 TAN Instruction 4-78
4.10.5 ASIN Instruction -4-78
4.10.6 ACOS Instruction : 4-78
4.10.7 ATAN.Instruction 4-79
4.10.8 EXP Instruction 4-80
4.10.9 LN Instruction . 4-80
4.10.10 LOG ~nstr&tion 4-80

4.11 DDC Instructions 4-81
, .

4.11.1 DZA Instruction 4-81
4.11.2 DZB Instruction 4-82
4.11.3 LIMIT Instruction 4-84
4.11.4 PI Instruction 4-86
4.11.5 PD Instruction 4-88
4.11.6 PID Instruction 4-90
4.11.7 LAG Instruction 4-93
4.11.8 LLAG Instruction 4-94
4.11.9 FGN Instruction 4-96
4.11.10 WGN Instruction 4-98
4.11.11 LAU Instruction 4-100
4.11.12 SLAU Instruction 4-103
4.11.13 PWM Instruction 4-107

4.12 Table Data Operation Instructions 4-108
4.12.1 Block Read Instruction (TBLBR) 4-108
4.12.2 Block Write Instruction (TBLBW) 4-109
4.12.3 Row Search Instiuction: Vertical Direction (TBLSRL) 4-110
4.12.4 Column Search Instruction: Horizontal Direction (TBLSRC) 4:111
4.12.5 Block Clear Instruction (TBLCL) 4-112 ,
4.12.6 Inter Table Block Transfer Instruction (TBLMV) 4-113
4.12.7 Cue Table Read Instruction (QTBLR, QTBLRI) 4-114
4.12.8 Cue Table Write Instruction (QTBLW, QTBLWI) 4-115
4.12.9 Cue Pointer Clear Instruction (QTBLCL) 4-116

5 SFC PROGRAMMING 5-1
5.1 Configuration of a n SFC Program 5-2
5.2 Executionof SFC 5-2
5.3 SFC System Operation Registers 5-3
5.4 SFC Flowchart 5-4
5.5 SFC Action Box 5-5
5.6 SFC Output Definition Time Chart 5-6
5.7 Step Name Designation Method ' 5-7
5.8 Taking Out System Step Nos. 5-7 . .
5.9 Precautions upon Preparation of an SFC Program 5-8 . .

5.9.1 Restrictions concerning Branching and Converging Connections 5-9
5.9.2 Restriction conce'rning Branching and

Converging Connections in a Multi-Token ~ t k t u r e 5-11
5.9.3 Restriction of the Number of Branches in a Multi-Token Structure 5-12
5.9.4 Restrictions concernine Subroutines 5-13 -

(1) Restrictions concerning Nesting (Depth of Macro) 5-14
(2) Restrictions concerning Jumping 5-15
(3) Restrictions concerning ranch&^ 5-16
(4) Restrictions concerning the Timer Transition Condition Instruction 5-17

5.9.5 Restrictions concerning Step Names 5-18

TABLE OF CONTENTS

6 TABLE FORMAT PROGRAMMING 6-1
6.1 Types of Table Format Programs 6-2
6.2 Execution of Table Format Programs 6-3
6.3 Constant Table (M Register) 6-4

6.3.1 Outline of the Constant Table (M Register) 6-4
6.3.2 Preparing the Constant Table (M Register) 6-5

(1) Defining the Constant Table (M Register) 6-5
(2) Inputs into the Constant Table (M Register) 6-5

6.4 Constant Table (#Register) 6-6
6.4.1 Outline of the Constant Table (#Register) 6-6
6.4.2 Preparing the Constant Table (#Register) 6-7

(1) Defining the Constant Table (#Register) 6-7
(2) Inputs into the Constant Table (#Register) 6-7

6.5 UO Conversion Table 6-8
6.5.1 Outline of the UO Conversion Table 6-8
6.5.2 Preparing the UO Conversion Table 6-9

(1) Scale Conversion Function 6-9
(2) Bit Signal Conversion Table 6-10

6.6 Interlock Table 6-12
6.6.1 Outline of the Interlock Table 6-12
6.6.2 Preparing the Interlock Table 6-13

6.7 Part Composition Table 6-14
6.7.1 Outline of the Part Composition Table 6-14
6.7.2 Preparing the Part Composition Table 6-15
6.7.3 Preparing the Function Program for Parts 6-16

6.8 Constant Table (C Register) 6-17
6.8.1 Outline of the Constant Table (C Register) 6-17
6.8.2 Preparing the Constant Table (C Register) 6-18

(1) Defining the Constant Table (C Register) 6-18
(2) Inputs into the Constant Table (C Register) 6-18

7 STANDARD SYSTEM FUNCTIONS 7-1
7.1 Data Trace Read Function (DTRC-RD) 7-2

7.1.1 Readout of Data 7-3
7.1.2 Configuration of the Read Data 7-4

(1) Data Cofiguration 7-4
(2) Record Length 7-4
(3) Number of Records 7-4

7.2 Trace Function (TRACE) 7-5
7.3 Failure Trace Read Function (Fl'RC-RD) 7-6

7.3.1 Data Readout (Failure Occurrence Data) 7-7
7.3.2 Readout Data Configuration (Yailure Occurrence Data) 7-7

(1) Data Configuration 7-7
(2) Record Configuration 7-7
(3) Structure of Register Designation No. (2 words) 7-7
(4) Number of Records 7-7

7.3.3 Data Readout (Failure Restoration Data) 7-8
7.3.4 Readout Data C ~ ~ g u r a t i o n (Failure Restoration Data) 7-8

(1) Data Configuration 7-8
(2) Record Configuration 7-8
(3) Number of Records 7-8

7.4 Inverter Trace Read Function (ITRC-RD) 7-9
7.4.1 Readout of Inverter Trace Data 7-10
7.4.2 Readout Data Configuration 7-10

(1) Data Configuration 7-10
(2) Record Length 7-10
(3) Number of Records 7-10

7.5 Inverter constant Write Function (ICNS-WR) 7-11
7.5.1 Configuration of the Write-in Data 7-12
7.5.2 Method of Writing to an EEPROM 7-13

(1) WRITE ENTER Command 7-13
(2) Program Example 7-14

7.6 Inverter Constant Read Function (ICNS-RD) 7-16 '

7.7 CP-213 Initial Data Setting Function (ISET-213) 7-18
7.8 Send Message Function (MSG-SND) 7-19

7.8.1 Parameters 7-20
(1) Process Result (PARAMOO) 7-20
(2). Status (PARMOl) 7-21
(3) Called Station.# (PARAM02) 7-22
(4) ' Function Code (PARAM04) 7-22
(5) Data Address (PARAM05) 7-23
(6) ' Data Size (PARAMO6) 7-23 . .

(7) Called CPU # (PARAM07) 7-24
(8) Coil Offset (PARAM08) 7-24
(9) , Input Relay Offset, (pARAMO9) 7-24
(10) Input Register Offset rARAM10) 7-24
(11) Holding Register Offset (PARAM11) 7-24
(12) For System Use (PARAM12) 7-24
(13) Relationship between the Data Address, Size and Offset 7-24
(14) When Transmission Protocol is set to Non-procedural 7-24-

7.8.2 Inputs 7-25
(1) EXECUTE (Send Message Execution Command) 7-25
(2) ABORT (Send Message Forced Interruption Command) 7-25
(3) DEV-TYP (Transmission Device Type) 7-25
(4) PRO-TYP (Transmission Protocol) 7-25
(5) CIR-NO (Circuit No.) - 7-25
(6) CH-NO (Channel No.) 7-25
(7) PARAM (Set Data Head Address) 7-25

7.8.3 Outputs 7-26
(1) BUSY (In Process) 7-26
(2) COMPLETE (Completion of Process) 7-26
(3) ERROR (Occurrence of Error) 7-26

7.8.4 Limitations Arising from Other Companies'
Communications Protocols with the CP-217IF 7-27
(1) ' When Making a Dedicated Protocol

Connection Link with the MELSEC computer 7-27
(2) When Making an OMRON Upward Linking Mode (SYSWAY) Connection 7-27

7.8.5 Program Example 7-28
7.9 Receive Message Function (MSG-RCV) 7-29

7.9.1 Parameters 7-30
(1) Process Result (PARAMOO) 7-30
(2) Status (PARAMOl) 7-31
(3) Caring Station # (PARAM02) 7-31
(4) Function Code (PARAM04) 7-31
(5) Data Address (PARAM05) 7-31
(6) Data Size (PARAMO6) 7-31
(7) . Calling CPU # (PARAMO7) 7-31
(8) Coil Offset (PARAM08) 7-31
(9) .Input Relay Offset (PARAMO9) 7-31
(10) Input Register Offset (PARAM 10) 7-32
(11) Holding Register Offset (PARAM11) 7-32
(12) Write-in Range LO (pARAM12), Write-in Range HI (PARAM13) 7-32
(13) For System Use (pARAM14) 7-32
(14) When Non-procedural is set for Transmission Protocol 7-32

TABLE OF COhTENTS

7.9.2 Inputs 7-32
(1) EXECUTE (Receive Message Execution Command) 7-32
(2) ABORT (Receive Message Forced Interruption Command) 7-32
(3) DEV-TYP (Transmission Device Type) 7-32
(4) PRO-TYP (Transmission Protocol) 7-33
(5) CIR-NO (Circuit No.) 7-33 * . ,

(6) CH-NO (Channel No.) 7-33
(7) PARAM (Set Data Head Address) 7-33

7.9.3 outputs 7-33
(1) BUSY (In Process) 7-33
(2) COMPLETE (Completion of Process) 7-33
(3) ERROR (Occurrence of Error) 7-33

7.9.4 Limitations Arising from Other Companies'
Communications Protocols with the CP-217IF 7-34
(1) When Making a Dedicated Protocol

Connection Link with the MELSEC Computer 7-34
(2) When Making an OMRON Upward Linking Mode (SYSWAY) Connection 7-34

7.9.5 'Program Example 7-35
7.10 Counter Function (COUNTER) 7-36
7.11 First-in First-out Function (FINFOUT) 7-37

Appendix A- 1
A Types of Instruction Words A-2
B List of Instructions A-3
C Differences on Programming between CP-9200H and CP-9200SH A-16

1. INTRODUCTION TO PROGRAMMING

INTRODUCTION TO
PROGRAMMING

The programming languages that can be used
with CP-9200SH are described in this chapter.

1.1 Programming Languages

CP-9200SH support the programming languages shown in Table 1.1. User programs can be
prepared using the programming language that is optimal for the application. For details,
refer to the Control'Pack CP-9200SH User's Manual (SIE-C879-40.1).

Table 1.1 Programming Languages that can be Used

I Procrammine. L a n w a e I Chiracteristics

Table format program

Ladder program
,

SFC (sequential function
chart) program

Programs are prepared using relay circuit instructions
and text type instructions (contml instructions, numerical
operation instructions, etc.) - Sequential processes, numerical operation processes,data
processes, and various other programs can be written.

I - Programs for specific applications are prepared in FIF
(fill in form) with the use of tables.
Tables, such as the constant data setting table, interlock
table, and part composition table, are available.

- Sequential programs are prepared in flowchart form by
the use of steps and transition conditions. - Sequences, such as automatic operation flows, can be
written readily.

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

HIERARCHICAL STRUCTURE OF THE 2 DRAWING SYSTEM AND PROGRAMS

Drawings, which are the basic programming units,
and their hierarchical structure and function
definition methods are described in this chapter.

User programs are managed in units of drawings, which are identified by the drawing No.
@WG No.). These drawings serve as the basis of user programs.
There are parent drawings, child drawings, grandchild drawings, and operation error processing
drawings. Besides drawings, there are also functions, which can be referenced freely from
each drawing.

Parent Drawings
The parent drawing is executed automatically by the system program when the "Condition of
Execution" of Table 2.1 is established.

Child Drawings
Child drawings are executed upon being referenced from the parent drawing by the SEE
Instruction.

Grandchild drawings
Grandchild drawings are executed upon being referenced from a child drawing by the SEE
Instruction.

Operation Error Processing Drawing
This is executed automatically by the system program upon occurrence of operation error.

Functions
Functions arci executed upon being referenced from the parent, child, or grandchild drawing
by the FSTART Instmction.

2.1 Types and Priority Levels of Parent Drawings

Parent drawings are classified by the first character of the drawing (A, I, H, L) according to
the purpose of the process. The priority levels and execution conditions of drawings are detined
as shown in Table 2.1. For details, refer to the Control Pack CP-9200SH User's Manual (SIE-
C879-40.1). 3

Table 2.1 Types and Priority Levels of Parent Drawings

Type of
Parent

Drawing -
DWG.A

DWG. I

(Note) : The details of the number of drawings is as follows. '
Parent drawing : l (0)
Operation error processing drawing: 1 (0 00)
Child drawings (u 01 to 99) A maximum total of n-2 child n-2
Grand child drawings :}\(066.01 to 99)) and grandchild drawings.

DWG. FI

DWG. I,

,
(A, L: 62, H, L: 98)

* n: the maximum number of drawings that can be used.
U : first character of the drawing (A, I, H, L)
M : child drawing number

Role of
Drawing

Starting
iwocess

Interruption
process

High-speed
scan process

Low-speed'
scan process

Priority
.Level

.
.-

.
. '

Condition of Execution

Turning on the power (Executed once
when the power is turned on.)

Star t of interruption (Executed upon
rising of interruption input signal.)

Number of
Drawings

(Note)

64

64

Start of fixed cycle (Executed on each
high-speed scan time.)

Start of frxed cycle (Executed on each
low-speed scan time.)

100

100

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

2.2 Execution Control of Parent Drawings

2.2.1 Execution Control of Parent Drawings

Each drawing is executed based on its priority level as shown in Fig. 2.1.

I

On each high- On each low-
s eed scan time --r-

s eed scan time
--r--

I I

High-speed Scan
s?

Operation Error Interruption Signal
I -
Operation E m r Interruption

Pmeess Drawin
v. A T TT T

continue with continue with
original process original process

Fig. 2.1 Execution Control of Parent Drawings

2.22 Scheduling of the Execution of Scan Process Drawings

The scan process drawings are not executed simultaneously but are scheduled based on priority
levels as shown in Fig. 2.2 and are executed on the schedule.

Low-speed scan

High-speed High-speed High-speed High-speed
scan ++ scan + + scan + + scan

I I I I

Ground *

: in
execution

* : For executing internal processes (self-diagnosis, etc.) of the system.

Fig. 2.2 Scheduling of the Execution of Scan Process Drawings

Hierarchical Structure of Drawings

The drawings are arranged in the manner parent drawing - child drawing - grandchild drawing.
However, a parent drawing cannot reference a child drawing of a different type and a child
drawing cannot reference a grandchild drawing of a different type. The child drawing is
referenced from the parent drawing, and from that child drawing the grandchild drawing is
referenced. This structure is always followed, and is called the hierarchical structure of
drawings.

Execution of Drawings

The user prepares each processing program w t h a parent drawing - child drawing - grandchild
drawing hierarchy as shown in Fig. 2.3.

parent Drawing] [Child Drawing] [Grandchild Drawing] Function]

Referencing of a
. . function by a grandchild

Referencing of a function by a

Referencing of a function by a
parent drawing

E E E I
(Note) Substitute A, I, H, or L in X.

Fig. 2.3 Hierarchical Structure of DWG's

The parent drawing is executed automatically by the system, since from Table 2.1 of 2.1 "?lpes
and priority of parent drawings," criteria for execution are determined separately for each
type. In other words, the parent drawing is automatically called (called up and executed) by
the system. Thus, the customer can execute any child or grandchild drawing by programming
a DWG reference instruction (SEE instruction) in the parent or child drawings.
Functions listed in 2.2 may be referenced from all drawings. Furthermore, a function can be
referenced bv a function.
If a operation error occurs, operation error processing drawings corresponding to each screen
will be started.

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

2.3.2 Execution Process of Drawings

The execution process of the drawings arranged in a hierarchy is carried out in a manner
whereby lower-ranking drawings are referenced by upper-ranking drawings.
Taking an example of DWG. A, the hierarchical structure of DWGs (drawings) is shown in
Fig. 2.4.

Start up when system program
execution conditions are satisfied

1
Parent Drawing Child Drawing Grandchild Drawing -

;A01
SEE A01.01 -

f

SEE A01.02 2
DWGAOLm

> DEND

DWG expression : DWG. 0 M .00

[L-
Grandchild drawing no.(Ol to 99)

Child drawing no. (01 to 99)

Type of parent drawing (A, I, H, L)

DWG. I? 00

Operation error drawing (A, I, R, L)

Fig. 2.4 Drawing Execution Process

2.4. Functions

Functions can be freely referenced-from any drawing. Functions can even be referenced
. . . simultaneously from drawings of different types and different hierarchies. Further, functions

can also reference other functions. The following benefits can.be obtained by using functions.
It become easy to arrange a program into parts.
The program can be prepared and maintained easily.

A function is composed of thefunction definition, which determines the number and types of
data that are input into and output from a function, and the main body (program), which
depicts the processes that are to be executed according to the inputs and outputs. Functions
can be classified into standard system functions, which are made available by the system, and
user functions, which are defined by the user.

Standard System Functions. '

The user can freely use a function that has been predefined by the system, but is not permitted
to modify the contents of that function. In other words, the user cannot freely create definitions
(program). Refer to Chapter 7 "Standard System Functions" for more information on system
functions.

User Functions
These are functions that aredefined (programmed) freely by the user. The user prepares the
function definition and the main body (program) of the function. See 2.4.2 "User Function
Preparation Procedures" concerning the preparation methods.

2.4.1 Function Definition

Functions are defined by the user at the time of user function preparation using the graphic
expression form for functions shown in Fig. 2.5.

FuNC-011 I - Name of Function
Bit *put 1--4'iNPIJT-1 OUTPUT-1 Bit output

Bit input OUTPUT3 Bit output t
(Note): The names of the function, the inputs, and the outputs are respectively expressed in 8

or less alphanumeric characters.

Numerical input :=. OUTPUT9
(integer, double-length
integer, real number)
Numerical input OUTPUT4
(integer, double-length INPUT4
integer, real number) Address input

Fig. 2.5 Graphic Expression of a Function

===* Numerical output
(integer, double-length
integer, real number)

==:a Numerical output
(integer, double-length
integer, real number)

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

2.4.2 User Function Preparation Procedure

Fig. 2.6 shows the procedure for preparing user functions, which can be defined freely by the
user.

the function definition Input is made using the CP-717,

Determination of
the UO s~eciiications

Prepare in the same manner as the DWGs. However, the
types of registers used will differ h m those used with the
DWG's. Be careful of the correspondence of the register
numbers used in the function program and the data input1
output upon referencing the function.

Determine the number of UOs and the data types.

Input in the following procedures:
A Input the name of the function with the FSTART

Instruction.
B Use the FIN Instruction to prepare the program for input

data.
C Use the FOUT Instruction to prepare the program for

output data.

* : If a system function is to be used, prepare the program upon referring to the description
on UO definition in Chapter 7 "STANDARD SYSTEM FUNCTIONS". Since the UO
specifications, the function definition, and the main body of the function program are
already provided by the system in the case of system functions, these do not have to be
defined or prepared.

Fig. 2.6 User Function Preparation Procedure

For more details on operating the CP-717, refer to the Control Pack CP-717 Operation Manual
(SIE-C877-17.4, -17.5).

3. REGISTER MANAGEMENT METHOD 7

REGISTER MANAGEMENT 3 METHOD

Various types of registers are introduced according
to application and the register attributes and
designation methods are described in this chapter.

3.1 Register Designation Method
As shown in Table 3.1, registers may be designated by direct register No. designation or by
symbolic designation.
These two types of register designation methods may be used together in the user programs.
When symbolic designation is to be used, the relationship between the symbol and the register
No. must be defined in the symbol table described later.
Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details.

Table 3.1 Rwister Designation Methods - -

I Address type r s s t e ; designation : MA001000
O : In the case of subscript designation, the subscript i or j is attached

' h e of
nesimation - .-.

hect register
lo. designation

Designation Method

Bit type register designation : MB00100AO
Integer type register designation : MW001000
Double-length integer type register designation : MLOOlOOO
Real number b e reeister desienation : MF001000

v
An alphanumeric expression of

8 characters or less.
O : In the case of subscript designation, a "." and then the subscript, i

or j, are attached after the alphanumeric expression of the symbol
with 8 characters or less.

ymbolic
esignation.

- - -
Direct ~ e g i m t

Register No.: V T No. [Bit No.] [Subscript]

Can designate the subscript i or j.

When T = B (bit type) (hexadecimal: 0 to F)

Register No. given by V (decimalhexadecimal)

-
after the register No.

Bit type register designation : RESET1-A. U
Integer type register designation : STIME-H.0
Double-length integer type register designation : POS-REF.
Real number type register designation : IN-DEF. 0
Address type register designation : PID-DAT4.0

L Type of register
DWG (V : S I M I I I O I C I # I D)
Function W . S I M I I I O I C I # I D I X I Y I Z I A)

Symbolic Designation

Symbol : [Symbol Name] 1.1 [Subscript]

Can designate the subscript i or j. i T T
1 Necessary when a subscript is to be used

(to differentiate between the symbol name and the
subscript).

L Name attached to the register: 8 characters or less
0 0000000 -

I Alphanumeric or symbolic characters

L Alphabetic or symbolic character
(A number cannot be used at the head of a symbol name.)

3. REGISTER MANAGEMENT METHOD

3.2 Data Types

There are five data types; the bit type, the integer type, the double-length integer type, the
real number type, and the address type. These are used according to the purpose.
Address type data may he used only for pointer designation,
Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for the corresponding
device for details.

Table 3.2 Data Types

)ata Type

lit

nteger

)ouble-
a g t h
nteger

leal
umber

Numerical Range I Remarks

)N.OFF l ~ s e d for relav circuits. . - . - - - I .
l ~ s e d for numerical operations. Values in
() are used in the case of logic
operations.
Ordinarily used in a series of instruction
groups that begin with an integer type
entry instruction (J-). I t can also be
used in a series of instruction groups
that begin with a real number type entry

Used for numerical operations. Values in
() are used in the case of logic
o~erations.
Ordinarily used in a series of instruction
groups that begin with an integer type
entry instruction (t). It can also be

I used in a series oftttskction groups
that begin with a real number type entry
instruction (It-).

Used for numerical operations.
May only be used in a series that begins

+ (1.175E -38 to 3.4023 with a real number type entry

t38),0 instruction (IF). Please keep in mind
that it cannot be used in a series of
instruction groups that begin with an
integer type entry instruction (I-).

I to 32767 l ~ s e d onlv for oointer desienation.

Register Designation and Data Types I
1wB0010061

Pointer Designation

1 Memory Register Domain

Address

.. .

V . Fig; 3.1 Pointer Designation

In Fig. 3.1, MAOOlOO signifies the memory address nn of MW00100.
By h a n h g MAOOlOO to a function, the register domain below MWOOlOO may be used
for internal processes of the function. Such use of an address as an argument of a function
is referred to as "pointer designation". In this way, the register domain below MWOOlOO
can be heely used for bits, integers, double-length integers, or real numbers.

3. REGISTER MANAGEMENT METHOD

3.3 Type of Registers

3.3.1 DWG Registers

The 7 types of register shown in Table 3.3 can be used in each DWG.
Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details.

Characteristic

Used in
common by
DWG's

Unique to
each DWG

Table 3.3 DWG Registers

Description

Registers made available by the system.
The register No. nnnnn is a decimal expression.
Upon system start-up, SW00000-SW00049 are all
cleared to 0.

Registers used in common among DWG's.
Used for UF between DWG's, etc.
The register number nnnnn is a decimal
expression.

Register that is used for interface with UO module
and communication module.
The register number hhhh is a hexadecimal
expression.
The register numberis assigned on the module
configuration definition screen. The register
numbers COOO and later are used for interface
with motion modules such as SVA modules. For
details, refer to the instruction manual of each
module.

Register that is used for interface with UO module
and communication module.
The register number hhhh is a hexadecimal
expression.
The register number is assigned on the module
configuration definition screen. The register
numbers COOO and later are used for interface
with motion modules such as SVA modules. For
details, refer to the instruction manual of each
module.

Register that can only be referenced by a
program. The register number nnnn is a decimal
expression.

Registers that can only be referenced in a
program.
Can only referenced the corresponding DWG.
The actual application range is specified by the
user with the CP- 717.
The register number nnnnn is a decimal
expression.

Internal registers unique to each DWG.
Can only referenced the corresponding DWG.
The actual application range is specified by the
,,,,with the cp. 717.
The register number nnnnn is a decimal
expression.

Designation
Method

SB, SW, SL,
 SF^^^^^

MB, MW,
ML,
MFnn-
w n n)

IB' IW' IL'
IFhhhh
whhh)

OB' OW' OL'
0-h
(OAhhhh)

CB, CW, CL,
CFnnnnn
(C a m)

#B, #W, #L,
#Fnnnnn
(#Annnnn)

DB' DW' DL'
DFnnnnn
mAnnnnn)

I

0

D

Name

register

Data
regoster

Input
register

Output
register

Constant
register

#register

D register

3.3.2 Function Registers

The 11 types of registers shown in Table 3.4 can be used in each function.
Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details.

Table 3.4~ Function Registers

Type

X

Function
output
register

Z

A

Name

Function
input
register

YB,YW;YL,YF-n

D

lnique to
acb function

Outputs from a function
Bit output :TB000000 to YBODWOF
Integer output :YW00001 to YW00016
Double-length integer output: YLOOOOl toYLO0015

Register
inside
function

Register
outside
function

1

(Note) SA, MA, IA, OA, DA, #A, and CA may also be used lnside a function.

3.3.3 CPU Internal Registers

Designation Method

-

XB,XW,XL,XFnnnnn

#Register

D r e b t e r

The registers shown in Table 3.5 are provided inside the CPU. These are used for carrying out
user program processes. . .

Description

Input into a function
Bit input :XB000000 toXBOOOOOF
Integer input :XW00001 to XW00016
Double-length integer input: XU10001 toXLOOOl5
The register number ~ n n n is a decimal expression.

Z B , Z W , Z L , Z F ~ ~ ~

ABAW;ALAhmnn

System
register

Data
register

Input
register

Output .
register

Constant
register

Table 3.5 CPU Internal Registers

The register number nnnhn is a decimal expression.

In@rnal registers unique to each function.
Can be used for internal processes of the function.
The register number nnnnn is a decimal expression:

External registers that use the address input value as the base
address.
For linking with (s, M, I, 0 , #, D-).
The register number ~ n n n is a decimal expression.

#B,#W,#4#m
(#Annnnn)

, .

DB'DW,D4DFn-.
(D-)

-
Register I Usage

A register (Used as a register for logic, integer, and double-length integer

Register that can only be referenced by a program.
Can reference only the corresponding function.
The actualapplication range is spec%+ by the user'witb the
CP-711. I
The register number m m n is a decimal expression.

Characteristic internal register for each function.
Can reference only the corresponding function.
The actualapplication range is specified by the user with the
CP.717~ . .

SB,SW,SL,SFnnnnn
(-)

MB.MWMhhW=n=
(MAmumn)

-
IB'IW'IL'IFhhhh
(IAhhhh)

OB,OW,OL,OFbhhh
(OAhhhh)

CB,CW,CL,CFbmmn
(CAnnnnn)

-.
The register numb& -n is a decim'al expression.

. .

Same the DWG registers. . .

(Since these registers are used in wmmon by both DWG's and
functions, be careful of their use when the same function is
referenced from DWG's of different priority levels.)

3. REGISTER MANAGEMENT METHOD

3.3.4 Subscripts i and j

Two types of registers, i and j, are used exclusively for modifying a relay number or register
number. i and j have the same function.
These subscripts are explained below with an example for each register data type.

(1) When a Subscript is Attached to Bit Type Data
This will be equivalent to adding the value of i or j to the relay number. For example if
I=2, MBOOOOOOi will be the same as MB000002. IfJ=27, MBOOOOOOj will be the same as
MB000001B.

(2) When a Subscript is Attached to Integer Type Data
This will be equivalent to adding the value of i or j to the register number. For example,
ifI=3, MWOOOlOi will be the same as MW00013. If J=30, MWOOOOlj will be the same as
MW00031.

(3) When a Subscript is Attached to Double-Length lnteger Type Data
This will be equivalent to adding the value of i or j to the register number. For example,
i f I=l , MLOOOOOi will be the same as ML00001. MLOOOOOj will be as follows when J=0
and J=1. Be careful.

Upper word Lower word
MWOOOOl MW00000

MLOOOOOJ when J=0 :
MMOOOO

MMOOOOJ when J=1:
MLOOOOl

I b 00030 -J

(4) When a Subscript is Attached to Real Number Type Data
This will be equivalent to adding the value of i or j to the register number. For example,
if I=l, MFOOOOOi will be the same as MF00001. MFOOOOOj will be as follows when J=0
and J=1. Be careful

Upper word Lower word
MWOOOOl MW00000

equivalent MW00031 - I I-

MFOOOOOJ when J=0 :
MFOOOOO

MFOOOOOJ when J=1 :
MFOOOOl

(5) Example of Program Using a Subscript
The program shown in Fig. 3.2 is one in which the total for 100 registers from MWOOlOO
to MW00199 is set in MW00200 by the use of subscript j.

d MW00200
FOR J =00000 to 00099 by 00001
/- MW00200+MW00lOOj MW00200

Fig. 3.2 Example of Program Using a Subscript

3.3.5 Function VO and Function Registers

The inputs and outputs in a function referencing process correspond to the function registers
as shown in Table 3.6. Refer to the Control Pack CP-9200SH User's Manual (SIE-'2879-40.1)
for details.

Table 3.6 Correspondence between Function UO's and Function Registers

Function YO I Function'Register

Bit input 1 The bit number increases continuously from XBOOOOOO in the order
of bit input. (XB000000, XB000001, XB000002, ... , XBOOOOOF)

Integer, double- (The register number increases continuously from XW00001, XL.00001,

I of bit output. (YB000000, YB000001, YB000002, ... , YBOOOOOF)
Integer, double- I The register number increases continuously &om YW00001, YLO0001,

length integer, and
real number inputs

'

Address input

Bit output

and XFOOOOl in the order of the integer-double-length integer-real
number input.
(XWOOOOl, XW00002, XWOOOO3, ... , XW00016)
(XL€lOOOl, XLO0003, XLO0005, ... , XL00015)
(XFOOOOl, XF00003, XF00005, ... ,'XF00015)
The address input value corresponds to register No. 0 of the external
register. (Input value = MA00100 : MW00100 = AWOOOOO, MWOOlOl
= AWOOO01 ...)
The bit number increases continuously from XBOOOOOO in the order

Fig. 3.3 Function Program

length integer, and
real number
outputs

In the function program shown in Fig. 3.3, if
" I- AWOOOOO + AWOOOOl 3 AW00002" is written in the program inside the function, the

and YFOOOOl in the order of the integer, double-length integer, and
real number output, respectively.
CyWOOOOl, YW00002, YW00003, ... , YW00016)
(YLOOOOl, YL00003, YL00005, ... , YL00015)
cyF00001, YF00003, YF00005, ... , YF00015)

. -
operation:

"I- MWOlOOO + MW0100'1~MW01002" is executed.

3. REGISTER MANAGEMENT METHOD

3.3.6 Programs and Register Referencing Ranges

Max. 500 steps Im
r

@ Registers unique ta
each DWG ,-.----.----------------------..--, -

+ Constant data M i u 16384 words 6 .
: (#. #W, #L. #Rmmd i

Individual data Mar. 16384 words < j
! (DB. DW. D L D F r ~ n d i .--------------.------------------.

FUNC-Wo (Function)

Function external registe:
Mar. 500 steps

Registers unique to

-,

Registers common to all DWGs

: Data registers
i u.5. MW. ML tdhmlm!

Input registers
(IB. IW. 1L. IFhhhb)

Output registers

(08. ow. OL OFhhbb)

Constant registers
('3. CW. a. cFhKu0

@ : The registers that can be used in common by the DWG's may be referenced from any
drawing or function.

@ : Registers that are unique to each drawing can only be referenced within that drawing.
@ : Registers that are unique to each function can only be referenced within that function.
@ : The registers that can be used in common by the DWG's and the registers that are unique

to each drawing may be referenced from a function by the use of the function external
registers.

3.4 Symbol Management

3.4.1 Symbol Management in theDWG1s

All symbols used in the DWG are managed by the DWG symbol table shown in Fig. 3.7. Both
registration of symbols on the symbol table and designation of register numbers can be
performed on the symbol definition screen of the CP-717. Further, registration, deletion, and
modification of symbols as well as designation or modification of register numbers can be
done any time while a program is being prepared. A maximum of 200 symbols can be registered
for a single drawing. Refer to the Control Pack CP-717 Operation Manual (SIE-C877-17.4,
-17.5) for the method of defining DWG symbol tables.

When an'unregistered symbol is used during program preparation ...
Since only the symbol will be registered automatically i n the DWG symbol table, the
designation of the register number will become necessary after the p&gram is prepared.

Table 3.7 DWG Symbol Table
No. JRegister No.1 Symbol I Size * I Remarks

0 ~IBOOOOO ~STARTPBL I 1 I The register number is a
I hexadecimal

1 lOBOOOOO ISTARTCOM I 1 I The register

I I I I

: If a program is prepared using such data configurations as arrays,
index process data, etc., define the sizes used in the respective data

2
3
4
5
6

config&ations.
For example, if data is referenced as PIDDATki and i.takes on values
in the range 0 to 9, define the size as 10.

3.4.2 Symbol Mana'gement in the Functions

MWOOOOO
MBOOOOlO
MWOOOlO
MW00020
MW00021

The symbols used in the functions are all managed with the symbol table, shown in Table 3.8.
The registration, deletion, and modiGcation of a symbol and the designation and modification
of a register number are carried out in the same manner as in the DWG's.

SPDMAS
WORK-DB
PIDDATA
LAUIN
LAUOUT

Table 3.8 Function Symbol Table

I Size * I . Remarks
I . I

1
16
10
1
1

* : If a program is prepared using such data configurations as arrays,
index process data, etc., define the sizes used in the respective data
configurations.
For example, if data is referenced as P1DDATA.i and i takes on values
in the range 0 to 9, define the size as 10.

-
hexadecimal expression.

3. REGISTER MANAGEMENT METHOD

3.5 Upward Linking of Symbols and Automatic Number Allocation

3.5.1 Upward Linking of Symbols

The upward linking of symbols refers to the defining of symbols so that symbol names defined
in drawines of different hierarchical rank can be used to reference the same re6ster number. -. --

0- -- ~

Ordinarily, a symbol that is defined for a certain DWG or function becomes ;nique to that
DWG or function program and cannot be referenced by other DWG's or functions.
However, by using the upward linking function for symbols, a symbol defined in a parent
drawing may be referenced by a child drawing as long as the drawings are process drawings of
the same type. The upward l ik ing of a symbol is set a t the Symbol Definition screen of the
CP-717. Refer to the Control Pack CP-717 Operation Manual (SIE-C877-17.4, -17.5) for details
concerning the setting method.

Table 3.9 Linkable Symbols and Symbol Table for Linking

Symbol Table I Parent I Child I Grandchild I I Symbol 1 drawing I drawing I drawing 1

3.5.2 Automatic Register Number Allocation

Symbols of a parent drawing
Symbols of a child drawing
Symbols of a grandchild drawing
Symbols inside a function

Automatic registernumber allocation refers to the setting of the head register number and
the automatic allocation of re&er numbers to symbols for which register numbers have not -
been assigned.
Setting automatic allocation of register numbers can be performed on the symbol definition
screen of the CP-717. Refer to the Control Pack CP-717 Operation Manual (SIE-'2877-17.4,

0 : Linkable X : Not linkable

x
0
0
x

-17.5) for detailed procedures for setting them.

Table 3.10 Automatic Register Number Assignment

x
x
0
x

I DWG Symbol Table kEzzzmber I Function Symbol Table I Automatic Allocation Number I

x
x
x
x

0: Automatic number allocation possible
x : Automatic number allocation impossible

4. BASIC INSTRUCTIONS

4 BASIC INSTRUCTIONS

All of the instructions that can be used with CP-
9200SH are described in detail in this chapter.

[~rran~ement of This Chapter1

I n this chapter;the description of each instruction is arranged in the following manner.

Format] Description of the operands and the form of the operands of the instruction.

pescription] Description of the functions of the instruction.

[Operation of the Register]

Shows the storage status of the CPU internal registers.
The registers shown in Table 4.1 are provided inside the CPU. These are used to
perform user program processes.

0 : stored x : not stored
* : indeterminate
(Stored or not stored depending on the case.)

k A register, F: F register, B: B register, I : I register, J : J register

Table 4.1 CPU Internal Registers

Register I Usage I
I I ooerations. I Used as a register for logic, integer, and double-length integer A register

IF register l ~ s e d as a register for real number operations.

[Example(s)] Describes an example or examples of a simple program that uses the instruction.

B register

I register

J register

Used for relay circuit operations

Used as an index register 0.
Used as an index register (J).

4. BASIC INSTRUCTIONS

I Instruction with I1 I

4.1 Instruction with []

Format] [Instruction]

Pescription] A instruction with [I enables conditional execution according to the value of
the immediately preceding B register.
The instruction within [I is only executed when the value of the B register is
ON. [I can only be used for 1 instruction. A plurality of instructions cannot be
enclosed in a single [I. If [I is to be used for a plurality of instructions, attach
[I to each instruction.

[Operation of the Register]

When the B register is OFF:
0: stored x : not stored
* : indeterminate
(Stored or not stored depending on the case.)

When the B register is ON:
0: stored x : not stored
* : indeterminate
(Stored or not stored depending on the case.)

* : In accordance with the instruction within I].

[Example(s)] Example 1

H+
[SEE LO11

8 equivalent

I IEND
Example 2

1 "OqpOoF

[~nooooii [+ooiooi ~ ~ Y ~ ~ O O O O Z I
8 equivalent

~ 0 0 0 0 1 +00100 *no0002

I Child Drawing Referencing Instruction I
4.2 Program Control Instructions

4.2.1 Child Drawing Referencing Instruction (SEE)

pormat] . SEE <Child drawing No..or grand-child drawing No.>

[Description]. The SEE instruction is used when referencing a child drawing from a parent
drawing or when referencing a grandchild drawing from a child drawing.
Referencing cannot be performed between drawings which differ in type. For
example, "SEE H01" cannot be written inside DWG.L.

[Operation of the Register]

A I F l B l I l J 0: stored x : not stored
* : indeterminate * * * * * (Stored or not stored depending on the case.)

I - - 7 I ~ n d of execution of I I
SEE A01

DEND

Start of execution of
child drawing A01 DWG.AO1

4. BASIC INSTRUCTIONS

I FOR Structure Statement]

4.2.2 FOR Structure Statement

Format1 i- FOR V = A to B by C
Instruction sequence (processing program) L ,?Em

pescription] The instruction sequence surrounded by the FOR instruction and the
corresponding FEND instruction is repeated by the designated number of times

= (B - A + 1)lC). The variable V starts from initial value A and is incremented
by C on each repeated execution. The instruction sequence is ended when V>B.
The following registers may be used for V, A, B, and C.

V: Any registers of the integer type, any register of the integer type
with subscript, and any subscript register (I, J).

A, B, C: Any registers of the integer type, any register of the integer type
with subscript, any constant or any subscript register @, J).

@>A*, 0 0)
I I

To the next instruction

Fig. 4.1 Execution Control by the FOR Structure Statement

Depth of Structure Statemen

The FOR, WHILE, and IF structure statements may contain other structure
statements within themselves. This is called "nesting". A FOR, WHILE, or
IF structure statement can each be nested up to 8 times. The maximum
d e ~ t h of a nested structure u s i n ~ FOR, WHILE, and IF statements is thus - (reitricted to 24 nests.

[Operation of the Register]
0: stored x : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The total for 100 registers, &om MWOOlOO to MW00199, is stored in MW00200.

FOR J =00000 to 00099 by 00001
~ M w W ~ W + MWOOlOOj

WHILE Structure Statement

4.2.3 WHILE Structure Statement

lFormatl C WHILE
Instruction sequence 1 (judgment of repetition condition)

ONIOFF
Instruction sequence 2 (processing program) L WEND . .

pescription] The instruction sequence 2, between WHILE and WEND is executed repeatedly
as long as the conditions defined by i n s t ~ c t i o n sequence 1 and the ON (or
OFF) instruction are satisfied.When the conditions are no longer satisfied,
instruction sequence 2 is not executed and the program proceeds with the
instruction next to WEND.
As shown in Fig. 4.2, the condition for execution of instruction sequence 2 is
determined by the condition of the B register immediately preceding the ON
(or OFF) instruction (ie. the results of instruction sequence 1).
If, for example, the condition for execution is found to be not satisfied as a
result of the first execution of instruction sequence 1, the program proceeds
with the inscruction next to WEND without executing the instruction sequence
n

(a) WHILE-ON-WEND
Structure Statement

(b) WHILE-OFF-WEND
Structure Statement

: . ~ i ~ ; 4.2 Cpntrol of Execution by the WHILE Structure Statement

Depth of Structure S I
The FOR, WHILE, and IF structure statements may contain other structure
statements within themselves. This is called "nesting". A FOR, WHILE, or
IF structure statement can each be nested up to 8 times. The maximum depth
of a nested structure using FOR, WHILE, and IF statements is thus restricted
to 24 nests.

1 NOTE
Write the program so that the condition part (instruction sequence 1) of the
WEND structure statement will definitely be unsatisfied at some point. If the
repetition is continued endlessly and the program cannot proceed out of the
WHILE structure statement, the watchdog timer will be activated and the
CPU wil l stop.

: [Operation of the Register]
0: stored x : not stored
* : indeterminate
(Stored or not stored depending on the case.)

4. BASIC INSTRUCTIONS

I WHILE St~c ture Statement I

[Example(s)] The total for 100 registers, from MWOOlOO to MW00199, is stored in MW00200.

YBILE
I-I < 00100
ON
~H100200 + HYOOlOOi
F 1 + 00001
YEND

NOTE . ~ - ~-

Place an N.O. contact instruction (-jt) if an ON (0:
is to be used after a coil instruction.

r OFF) instruction

I IF Structure Statement I
4.2.4 IF Structure Statement

The IF structure statement' can take one of two formats depending on whether or not an
exclusive condition exists. Although the two formats are described separately below, there are
no essential differences between these two.

(1) IF Structure Statement - 1
Format] IFONDFOFF

Instruction sequence (pmessing program)

When the IFON Instruction is Used
The instruction sequence between IFON and IEND will be executed if
the current value of the B register is ON and will not be executed if the
current value of the B register is OFF.

When the IFOFF Instruction is Used '

The instruction sequence between IFON and IEND will be executed if
the current value of the B register is OFF and will not be executed if the
current value of the B register is ON.
The process flows are shown in Fig. 4.3.

B register

, *

' To the next instruction

(a) IFON-IEND
Structure Statement

Inrrmction w
To the next instruction

(b) IFOFF-IEND
Structure Statement

Fig. 4.3 Execution Control by the IFStructure Statement (1)

[Operation of the Register]

0: stored x : not stored
: indeterminate

(Stored or not stored depending on the case.)

~xample(s)] If MBOOOlO8 is ON, the contents of MW00021 are set to 0.

4. BASIC INSTRUCTIONS

I IF Structure Statement I

(2) IF Structure Statement - 2

[Format] IFONlIFOFF
Instruction sequence - 1 [ELSE L F x v A i o n sequence - 2

[Description] When the IFON Instruction is Used:
If the current value of the B register is ON, only instruction sequence 1
will be executed and instruction sequence 2 will not be executed. If the
current value of the B register is OFF, only instruction sequence 2 will
be executed and instruction sequence 1 will not be executed.

When the IFOFF lnstruction is Used:
If the current value of the B register is OFF, only instruction sequence
1 will be executed and instruction sequence 2 will not be executed. If the
current value of the B register is ON, only instruction sequence 2 will be
executed and instruction sequence 1 will not be executed.
The process flows are shown in Fig. 4.4.

Instruction
sequence 1 sebuence 2 sequence 1 sequence 2

To the next instruction To the next instruction

(a) IFON-ELSE-IEND (b) IFOFF-ELSE-IEND
Structure Statement Structure Statement

Fig. 4.4 Execution Control by the IF Structure Statement (2)

-4 Depth of Structure Statements (Nesting) 1-
The FOR, WHILE, and IF structure statements may contain other
structure statements within themselves. This is called "nesting." A
FOR, WHILE, or IF structure statement can each be nested up to 8
times. The maximum depth of a nested structure using FOR, WHILE,
and IF statements is thus restricted to 24 nests.

[Operation of the Register]

0: stored x : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The contents of MW00011 are set to 0 if MWOOOlO contains a positive
number and to 1 if MWOOOlO contains a negative number.

IF Structure Statement
Function Referencine Instruction (FSTARTl I

NOTE
Place an N.O. contact instructid k)if an IFON (or IFOFF) instruction
is to be used after a coil ins t~c t ion .

4.2.5 Function ~ e f k r e n c i n ~ Instruction (FSTART)

Format] . FSTART

[Description]. The FSTART instruction is used to reference an user function or a system
: function from a parent drawing, child drawing, or user function. The function

definition of the referenced user function must be prepared in advance. System
functions do not have to be defined by the user since they are already defined
by the system.

[Additional Note]

When "FSTART (r) " is input at the CP-717, the graphic display of the
' functions is displayed and the input of the function name is prompted. The

"FSTART" instruction itself will not be displayed on the screen. Refer to the
Control Pack CP-717 Operation Manual (SIE-C877-17.4, -17.5) for details on
the lnput method.

[Operation of the Register]
, . A l F I I I 1 0:storedx:notstored

* I * I * I * I *
* : indeterminate
(Stored or not stored depending on the case.)

4. BASIC INSTRUCTIONS

I Function I n ~ u t Instruction (FIN) I

4.2.6 Function lnput Instruction (FIN)

[Format] FIN

pescription] The FIN instruction is used to store input data into a function input register.
The forms of data input into a function register are shown in Table 4.2.

 able 4.2 Function lnput Data Forms

lnput Data Form

vt input

nteger type input

nput Designation' -
B-VAL

I-VAL

I-REG

hble-length
nteger type input

LVAL

LREG

teal number type
nput

F-VAL

F-REG

iddress input

designation

Description
Designates the output to be of a bit type.
Usually, the --(k instruction or the -+l--instmction is used to reference
the function.
The bit data become the input to the function.
Desianares the inout to be of an integer t m . . - ..

Usually, the t- instruction is used to reference the function.
The contents (integer data) of the register number designated with the
r insrmerian become the input to the function.

Designates the input to be the contents of an integer type register. The
number of the integer type register is designated when referencing the
function. The k- instruction is not necessary.
The contents (integer data) of the register with the designated number
bemme the Input to the function.
Designates the Input to be of a double-length integer type.

Usually, the t- instruction is used to reference the function.
The contents (double-lend integer data) of the register with the number .
desigoated with the t- instruction become the Input u, the function.
Designates the input to be the contents of a double-length integer type
register.
The number of the double-length integer type register is designated when
referencing the function. The +instruction is not necessary. The contents
(double.lengh integer data) of the register with the designated number
become the input to the function.
Designates the input to be of a real number type.
Usually, the t instruction is used to reference the function.
The contents (real number data) of the register with the number designated
with the ,k mstmcnon become the mput to the functm
Destgnates the mput to be the contents of a real number type regmer. The
number of the real number type register is designated when referencing the
function. The U- instruction is not necessary. The contents (real numbex
data) of the register with the designated number become the input to the
function.
Hands over the address of the designated register (an arbitrary intege~

repister) to the function. Onlv 1 innut is allowed in the ease of a user function - . . .
the CP-717.

[Operation of the Register]

0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Additional Note]

The graphic display of function inputs is displayed when "FIN [r) " is
input at the CP-717 after designating the data. The "FIN instruction itself
will not be displayed on the screen. Refer to the Control Pack CP-717 Operation
Manual (SIE-C877-17.4, -17.5) for details on the input method.

It is recommended that I-REG, L-REG, or F-REG be used if the UO data
are not of a bit type. II

4-11

I Function Output Instruction (FOUT) 1
4.2.7. Function Output Instruction(F0UT)

[Format] FOUT ,

pescription] The FOUT instruction is used to take out the contents of a function output
register as output data of the function. The forms of data output from a function
are shown in Table 4.3.

Outout Data Form

Table 4.3 Function Output Data Forms

Outout Desimation' I Deserintmn

Bit output

Integer type output

Designates the out ut to be of a ba type.
&VAL I Usudly. the 4 ~ n s t r u c t ~ o n BS used to reference the

hmmon. TheautDut data (bit data) are stared m the-ter . . I with the numbe<desimated with'the -04 instru&on.
I

- -

I Designates the output to be of a Integer type.

I-VAL I Usually, the * rnstrucuon is used reference the function.
The output data (integer data) are stored in the register
with the number designated with the * instruction.

Deegnates the output to be the contents of an integer type
regster.
The number of the integer type register is designated when

I-REG , referencing the function.
The insiruction is not necessary.
The output data (integer dam) are stored in the register
with the desimawd number.

I Designates the output to be of a d o u b l e - l e d integer type.
Usually, the a msmctmn is used to reference a functlon.

LVAL The output data (double-length integer data) are stared m
the rcmster wlth the number desxna ted wlth the *

Double-length integer .
type output

Real number type
DUtpUt

I Desienates the o u t ~ u t to be the mntenta of a doubleleneth
type regist&.

L-REG of the double-length inteaer t m e register is
designated when re fe renc~ng t h e l u n f i i o n . i ' h e *
instrucuon is not nexssaq. The output data (double-length
data) are stored in the replster with the desienated number.

F-REG

Designates the output tn be the contents of a real number
type register. The number of the real number type regster
1s designated when referencing the functlon.
The instruction is not necersarv. The outaut data lreal

I number data) are stored m the re&ter w t h ihe des&aated

[Operation of the Register]

0 : stored x : not stored
* : i n d e t e r h a t e
(Stored or not stored depending on the case.)

[Additional Note]

4. BASIC INSTRUCTIONS

I Function Output Instruction POUT) I

The graphic display of function outputs is displayed when "FOUT [F) "
is input at the CP-717 after designating the data. The "FOUT" instruction
itself will not be displayed on the screen. Refer to the Control Pack (2-717
Operation Manual (SIE-(3877-17.4, -17.5) for details.

Table 4.4 shows the function UO data defined by function definition in the
program example above.

Table 4.4 Function UO Data Forms
Input Data Data Form
INPUT-1 B-VAL
INPUT9 I -REG

INPUT4 L- REG

It is recommended that I-REG, L-REG, or F-REG be used if the UO data are
not of a bit type. II

Table 4.5 shows the correspondence relationships between the 110 data and
the function 110 registers when the UO data are referenced within the main
body of the function.

Table 4.5 UO Correspondence Relationships

4-13

(Comment Instmchon (COMMENT)]

4.2.8 Comment Instruction (COMMENT)
Comments can be written a t any position in the DWG program or user function program.
Alphanumeric characters may be used for comments.

Format1 "character st&? '

pescri&on] The character string enclosed with " " is treated as a comment. Since this is
merely a comment, it is not executed as an insimction. Be aware that it becomes
the target of the number of steps in the user program.
A character string of 12 characters will be equivalent to 1 step (1 basic
instruction).

[Operation of the Register] .
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

VOTE
Do not prepare a program that there is a comment instruction in the middle
)f branching in a series of sequence instruction groups.

I SBOOW04 DBOOOOOl

' - ~ & t e there is a branch

ABC . ' . + Comment instruction

Wrong

DBOOOOOl ,. - I
L--lw

~ k t e there is no branch

" ABC ' + Comment instruction

, I Correct

4. BASIC INSTRUCTIONS

I Comment Instruction (COMMENT)]

SBOOOOM DBOOOW1

Correct

In the diagram above, do not insert a comment instruction

* ABC ' Comment instruction

DBO00005
"

wmng

Do not prepare a program that there i s a comment
instruction between contact instructions.

I-
. ABC -

B Y DBO00005 - -

' ABC -
DBOOOOW DBWOOOl

-1 - DBWOW5 -

wmng

Correct

I Expantion Program Execution Instruction WALL) I
4.2.9 Expansion Program Execution Instruction (XCALL)

Format] XCALL <type of expansion program>

pescription] The XCALL instruction is used to execute an expasmion program.
Expansion programs refer to the table format programs. There are 4 types of
table format programs as shown in Table 4.6. With the CP-9200SH, these
expansion programs are converted into ladder programs for execution. A
converted ladder program is executed with the XCALL instruction. Although

. a ~ lu ra l i t v of XCALL instructions mav be used in one drawine, the same -
expansion program cannot be called more than once.

. Table 4.6 Types of Expansion Programs

, Symbol Program Type

MCTBL Constant table (M register)
IOTBL UO conversion table
ILKTBL I Interlock table
ASMTBL I Parts com~osition table 1

[Operation of the Register]

0 : stored X : not stored
: indeterminate

(Stored or not stared depending on the case.)

The conveted ladder
program cannot be
viewed at the CP-717. 1

Dw(h.sx Expansion Conversion Rogram

X W ' IUTBL I XPROC ILmL

4. BASIC INSTRUCTIONS

I Continuous execution tme direct i n ~ u t instruction (INS) I

Direct I10 Instructions

The direct 110 instructions are used to execute inputs and outputs in an user program
independent of the system UO (batch inputhatch output). An input or output is carried out a t
the point of execution of the direct UO instruction. The subsequent instruction is not executed
until the UO operation has been completed.

Continuous Execution Type Direct Input lnstruction (INS)
I

[Format] [Parameterhead address of the data table]

INS Register address (except for #lC)
[lXegister address (except for #/C) with subscript

[Description] The INS instmction conforming to previously set parameter table contents,
continuously performs direct input to a single module. The only modules that
can apply direct input are the LIO-011200010. Ifno error at all occurs, B register
is OFF. If an error occurred in even a single word, B register turns ON. During
operation, interruption by the system is prohibited.

Table 4.7 INS Instruction ParameterlDataTable

I I I
N+3 1 W IIDN llnput data N

* Method of RSSEL and MDSEL Settings
(1) RSSEL Designates the racklslot where the target module

is mounted.
Hexadecimal expression: xxyyH

xx = rack number (01, d xx d 04,)
yy = slot number (00,s yy S OD,)

However, designate the mounting racwslot as:
LIO-01: Mounting racklslot number on LIO-01

itself
200010: Mounting racwslot number on 2000IOIF

module connected to the target 200010
rack

(2) MDSEL
For the LIO-01: Designate the input data offset for the internal

LIO-01 module.
For the 200010: Designates the rack numberlslot numberlinput

module type in the 200010 rack of the target
module.

a: Input module type 0: Discrete input module
1: Register input module

b: Rack number (1 i b i 4)
c: Slot number (1 c 1 9)
d: Data offset (0 5 d 5 7)

F CB 87 43 0
i b a : C : i d abcdH

Hexadecimal:

[Continuous execution type direct input instruction (INS)]

Designation of RSSEL and MDSEL in a system codiguration shown below is
explained in ex @to ex @ .

ex@ LIO-01 (RACKlISLOT9) First word is input
RSSEM109H M D S E M

ex@ LIO-01 (RACKZISLOT2) Second word is output
RSSEP0202H MDSEP1

ex@ B2501 (Discrete input) (RACKlISLOT6) connected to 2000IOIF
(RACKZISLOTll) First word is input

R S S E ~ O ~ O B H ' MDSEMXOH
e x @ B2701 (Register input) (RACKWSLOT5) connected to 2000IOIF

(RACKWSLOTll) Fourth word is input
RSSEL=OZOBH MDSEIi1254H

ex@ B2500 (Discrete o u t ~ u t) RACKlISLOT5) connected to 2000IOIF - - , .
~ C K ~ V S L O T I I) First word is input

RSSEIi020BH MDSEL=0150H
ex@ B2700 (Register output) (RACK2lSLOT4) connected to 2000IOIF

(RACWSLOT11) . Seventh word is input
RSSEk020BH MDSEIi1247H

[Operation of the Register]

I-

0 : stored X : not stored
* : indeterminate

O O (Stored or not stored depending on the case.)

[Example(s)] ' Data input from LIO mounted at rack 2, slot 4.

I INS MA00100

* Input data stored in MW00104

4. BASIC INSTRUCTIONS

I Continuous execution tvue direct o u t ~ u t instruction (OUTS) I

4.3.2 Continuous Execution Type Direct Output lnstruction (OUTS)

[Format] [Parameterhead address of the data table]

Register address (except for #/C)
Register address (except for #/C) with subscript I

pescription] The OUTS instruction conforming to previously set parameter table contents,
continuously performs direct output to a single module. The only module that
can apply direct output is the LIO-01/2000IO. If no error a t all occurs, B register
is OFF. If an error occurred in even a single word, B register turns ON. During
operation, interruption by the system is prohibited.

Table 4.8 OUTS Instruction ParameterfData Table

* Method of setting RSSEL and MDSEL is the same as for INS.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] Two words output to LIO-01 mounted at rack 3, slot 10.

H030A = MWO0200
t - 0 s MWo0201
F 2 = WOO203

Output data 1 I Emu
Output data 2

tm
I OUTS MA00200

I N.O. Contact Instruction (-I k) I

4.4 Sequence Circuit Instructions

The circuit elements shown in Table 4.9 are used in combination to prepare sequence circuits.

Table 4.9 Sequence Circuit Elements

~ondeefion indication elements

(1) Branching T
(2) Parallel connection point T

Set mil
(3) Pardel connectibn . j

Reset coil <R H
6 1 Rising pulse I - z 1

Remarks No.

1 10 1 On-delay timer (Is unit) I - f E I
11 I Off-delay timer (Is unit) 1 4 7-

Sequence Clrmit Element

4.4.1 N.O. Contact Instruction (-1 I-,)

Symbol

Format]
Any bit type register
Any bit type register
with subscript +- I

[Description] The N.O. contact instruction sets the status bf the B register to ON if the value of tl
referenced register is 1 (ON) and to OFF if the value of the referenced register is
(OFF).

[Operation of the Register]

pfqFfqq 0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] When MBOOOlOO becomes ON, MBOOOlOl becomes ON.

[I T W MBOOOlOl
A
w

ON- MBOOOlOO OFF

ON- MBOOOlOl OFF

4. BASIC INSTRUCTIONS

I N.C. Contact Instruction (+)
I Coil Instruction (-+)

N.C. Contact Instruction (+)
Format] Any bit type register

Any bit type register
with subscript

-.---k-
I

[Description] The N.C. contact instruction sets the status of the B register to OFF ifthe value of the
referenced register is 1 (ON) and to ON if the value of the referenced register is 0
(OFF).

[Example(s)] When MBOOOlOO becomes ON, MBOOOlOl becomes OFF.

[Operation of the Register]

MBOOOlOO MBOOOlOl
*

v I w

A I F I B I I I J

0 (0 (1 0 (0

ON - MBOOOlOO OFF

MBOOOlOl OFF

0: stored x : not stored
* :indeterminate

Coil Instruction (4)

(Stored or not stored depending on the case.)

[Format]
Any bit type register
(except for # and C registers)
Any bit type register with subscript (except for # and C registers) 1

[Description] The coil instruction sets the status of the referenced register to 1 (ON) if the status of
the immediately preceding B register is ON and to 0 (OFF) if the status of the
immediately preceding B register is OFF.

[Operation of the Register]

0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] When MBOOOlOO becomes ON, MBOOOlOl becomes ON.

I I M 8 9 9 0 1 m MBOOOlOl
e
w

ON - MBOOOlOO OFF

'ON- MBOOOlOl OFF

Set coil I Reset coil instruction (+SH 1 -(RH) I
4.4.4 Set Coil I Reset Coil linstruction (4SH I +RH)

[Format]
Set Any bit type register

I
Reset Any bit type register

coil (except for # and C registers) 1 I (except for # and C registers)
Any bit type register with subscript Any bit type register with subscript
(except for # and C registers) (except for # and C registers)
. - - - - + s H , - ----+H

1
pescription] The set coil instruction turns the output ON when execution conditions are satisfi

and maintains that ON status. Conversely, the reset coil instruction turns the out
OFF when execution conditions are satisfied, and maintains that OFF status.

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.) . .

<Example 1> Case where the same output destination is designated multiple times.

The above ?ample acts as in the graph below.

, (1) When OBOOOOO is OFF, with the "set coil" instruction, OBOOOOO turns ON.
(2) When OBOOOOO is ON, with the "reset coil" instruction, OBOOOOOturns

4. BASIC INSTRUCTIONS

[Set coil I Reset coil instructions (+SH 1 -[RH)
I Rising Pulse Instruction (-J-)

<Example 22 When all execution conditions are ON.

This part of the program is pro-
cessed assuming OBOOOOO is
ON.

OBOOOOO is processed as OFF.

OBOOOOO is processed as ON.

During operation processing, the contents of the output are rewritten with each
step.
In the above case, OBOOOOO is ultimately ON.

Rising Pulse Instruction (-1-)

[Format] Any bit type register (except for # and C registers)
Any bit type register with subscript (except for # and C registers)

1
I

[Description] With the rising pulse instruction, when the status of the immediately preceding B register
changes from OFF to ON, the status of the B register turns ON and stays ON during
one scan. The designated register is used for storage of the previous value of the B
register.

[Operation of the Register]

0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] When IBOOOOl turns ON from OFF, MBOOOlOl turns ON and stays ON during I scan.
MBOOOlOO is used to store the previous value of IB00001.

IBOOOOl MBOOOlOO MBOOOlOl
L r fi

ON- IBOOOOl OFF

ON- MBOOOlOO OFF

ON
MBOOOlOl OFF

lscan lscan

Rising Pulse Instruction (-1- .)
Falling Pulse Instruction (-7-)

Table 4.10 Register Status with Rising Pulse Instruction

NOTE
In the above example, the instruction is used not for rise detection of MBOOOlOO t
is used for rise detection of IB00001. MBOOOlOO is used only for s tomg the previa
value of IB00001.

I Please be careful not to make a mistake.

4.4.6 Falling Pulse Instruction (-I-)

Format] Any bit type register (except for # and C registers)
Any bit type register with subscript (except for # and C registers)

t
1

[Description] With the falling pulse instruction, when the status of the immediately preceding B
register changes from ON to OFF, the status of the B register turns ON and stays ON
during 1 scan. The designated register is used for storage of the previous value of the
B register.

[Operation of th; Register]
0: stored X :not stored
* : indeterminate
(Stored or not stored depending on the case.)

b .

[Example(s)]. When IBOOOOl turns OFF, MBOOOlOl turns ON and stayg ON during 1 scan.
MBOOOlOO is used to store the previous value of IB00001.

- 8

MBOOOlOl
n . .

ON- IBOOOOl OFF -
MBOOOlOO OFF

ON
MBOOOlOl OFF 7

1 scan 1 scan

4. BASIC INSTRUCTIONS

I Falling Pulse Instruction (-1-)
On-delav Timer Instruction: unit of measurement=O.Ol seconds (4 k 1

Table 4.11 Register Status with Falling Pulse Instruction

I ON OFF ON OFF

Input

I ON ON ON I OFF

Result

NOTE
In the above example, the instruction is used not for fall detection of MBOOOlOO but
is used for fall detection of IB00001. MBOOOlOO is used only for storing the previous
value of IB00001.
Please be careful not to make a mistake:

I MBOOOlOO I MBOOOlOO I

On-delay Timer Instruction: unit of rneasurement=O.Ol seconds (-I' E)

Format] <'Set value Count value F
Set value : constant, any integer type register, or any integer type register with

subscript (0 to 655.35sec : in O.Olsec unit)
Count value: any integer type register (except for # and C registers), any integer type

register with subscript (except for # and C registers)

pescription] With the on-delay timer instruction, the time is counted while the status of the
immediately preceding B register is ON. The status of the B register becomes ON
when "Count value = Set value".
The timer operation is stopped when the status of the immediately preceding B register
becomes OFF in the middle of counting. When the B register turns ON again, the
counting is started from the beginning (0.00s).
A value equal to the actual counted time X 100 is stored in the count register.
The on-delay timer instruction (4 E) counts when the instruction is executed.
Thus, exercise caution when using it in IF, WHILE, or FOR statement.

(1) When used in IF structure statement.

MBOOOOOO
H+
IFON

Timer @
MBOOOlOO MBOOOlOl

1-1 -IT5.00 ~ ~ 0 0 0 1 1] 4 - I

IEND

In the above example, when MBOOOOOO is OFF, the instruction of timer @ is not
executed, accordingly time is not counted. The time operation remains stopped.

I On-delay Timer Instruction: unit of measurement=O.Ol seconds (4 E) I

lhen used in WHILE structure statement

t . 0 : 3 I

WHILE

t I -< 00100 -

ON Timer @

M~oooloo (~ ~ o o o l o l
I* '-1 5.00 ~ ~ 0 0 0 1 1) L,

INC ' I
. . . .

WEND J

In the above example, since instruction sequence @ is executed 100 times (C
599), the timer @ is also executed 100 times. Thus, the time is counted for
X scan time set value, so time is counted faster than real time.

/hen used in FOR structure statement I MBOOOOOO
Ht--
FOR I=000000 to 00099 by 00001

[Operation of the Register]

, A 1 F I B I I I J
0 :.stored X : not stored
' : indeterminate

O 1 O I I O I O (Stored or not stored dependingon the case.)

Timer. @
MBOOOlOO 2. MBOOOlOl
I-, +[5.00 MWOOOll l-----~-]

a .FEND

[Example(s)]
MBOOOlOO MBOOOlOl I 1-1 & ['SO0 M l l] - (I I

1 Instruction
sequence @

ON MBOOOlOO OFF

In the above example; since instruction sequence @ is executed 100 times (02
599), the timer @ is also executed 100 times. Thus, the time is counted for 1 C
X scan time set value, so time is counted faster than real time.

. .

MWOOOll 0

(Ts = scan set value)

MWOOOll works as timer count register. Thus, it is essential that there is no overlal
Set an unused register. II

4. BASIC INSTRUCTIONS

I Off-delay Timer Instruction: unit of measurement=O.Ol seconds (i F) I
Off-delay Timer Instruction: unit of measurement=O.Ol seconds (4 F)

Format] -I Set value Count value'k
Set value : constant, any integer type register, or any integer type register with

subscript (0 to 655.35sec : in 0.Olsec unit)
Count value: any integer type register (except for # and C registers), any integer type

register with subscript (except for # and C registers)

[Description] With the off-delay timer instruction, the time is counted while the status of the
immediately preceding B register is OFF. The status of the B register becomes OFF
when "Count value = Set value".
The timer operation is stopped when the status of the immediately preceding B register
becomes ON in the middle of counting. When the B register turns OFF again, the
counting is started from the beginning (0.00s).
A value equal to the actual counted timeXlOO is stored in the count register.
With the off-delay timer instruction, the time is counted when the instruction is executed.
'Therefore, pay attention when using the off-delay instruction in IF, WHILE, and FOR
structure statement.

(1) When used in IF structure statement

MBOOOOOO I -t-
, Timer @

~ B o o o l o o b!' M B O O O ~ O ~ 1 [5.00 MWOOOll T]-~--

I IEND

In the above example, when MBOOOOOO is OFF, the instruction of timer @ is not
executed, time is not counted. The timer operation remains stopped.

lhen used in WHILE structune statement.

t 0
WHILE

*I

Timer Q
MBOOOlOO I(MBOOOlOl

1- +[5.00 MWOOOll ']-c-/
INC 1

In the above example, since instruction sequence @ is executed
S99), the timer @ is also executed 100 times. Thus, the time is
X scan time set value, so time is counted faster than real time.

(3) When used in FOR structure statement

MBOOOOOO
H+

FOR I=00000 to 00099 by 00001

MBOOOlOO
1- +[5.00 MWOOOll T]-C-1

i Instruction
sequence @

100 times (051
counted for 100

Instruction
sequence @

FEND

In the above example, since instruction sequence @is executed 100 times (0 3
S99), the timer @ is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time.

4-27

I Off-delay Timer Instruction: unit of measurement=O.Ol seconds (-I 'k) I
[Operation of the Register]

-1 0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

. .
[Example(s)]

MBOOOlOO MBOOOlOl I k 1 5.00 ~~u,,~,--l I

. . . , .
500

MwOOOll , 0 ------
(Ts = scan set value)

NOTE
In the above example, MWOOOll functions as the count register of the timer. :
sure to set an unused register for thecountregister so that an overlap will r
occur. :.

4. BASIC INSTRUCTIONS

I On-delay Timer Instruction: units of measurement=l second (P !-) I
On-delay Timer Instruction: unit of measurement=l second (P !-)

Format] -['Set value Count value 1-
Set value : constant, any integer type register, or any integer type register with

subscript (0 to 65535sec : in lsec unit)
Count value: any integer type register (except for # and C registers), any integer type

register with subscript (except for # and C registers)

pescription] With the on-delay timer instruction, the time is counted while the status of the
immediately preceding B register is ON. The status of the B register becomes ON
when "Count value = Set value".
The timer operation is stopped when the status of the immediately preceding B register
becomes OFF in the middle of counting. When the B register turns ON again, the
counting is started from the beginning (0s).
A value equal to the actual counted timeXl is stored in the count register.
With the off-delay timer instruction, the time is counted when the instruction is executed.
Therefore, pay attention when using the on-day instruction in IF, WHILE, and FOR
structure statement.

11) When used in IF structure statement

MBOOOOOO
H+
IFON

Timer @ 1 -

MBOOOlOO d MBOOOlOl
14 +f500 MWOOOll]--I
IEND

In the above example, when MBOOOOOO is OFF, the instruction of timer is not
executed, time is not counted. The timer operation remains stopped.

(2) When used in WHILE structure statement.
.

I- 0 > I
WHILE

I < 00100

Timer @
MBOOOlOO d MBOOOlOl

1-1 *r 500 MWOOOll]--I

I WEND

1 Instruction
sequence

In the above example, since instruction sequence @ is executed 100 times (051
599), the timer is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time.

I FEND I

(3) When used in FOR structure statement.

In the above example, since instruction sequence @ is executed 100 times (051
599), the timer @ is also executed 100 times. Thus, the time is counted for 100
X scan time set value. so time is counted faster than real time. 4-29

MBOOOOOO
H+
FOR I=00000 to 00099 by 00001

MBOOOlOO
1- :IS 500 MWOOOll 11-1

Instruction
sequence @

I On-delay Timer Instruction: unit of measurement=l second (-? k) (

[Operation of the Register]

A I F I B I I I J
0: stored X : not stored
* : indeterminate

O I O I I O I O I (Stored or not stored dependingon the case.)

[Example(s)] :

MBOOOlOO MBOOOlOl
~ ~ ~ [s . 500 MWOOOll]k-I

ON I MBOOOlOl OFF

(Ts = scan set value)

I
In the above example, MWOOOll functions as the count register of the timer. Be
sure to set an unused register for the count register so that an overlap will not

4. BASIC INSTRUCTIONS

I Off-delay Timer Instruction: units of measurement=l second (-I 'b) 1
i.4.10 Off-delay Timer Instruction: unit of measuremenkl second (4 'I-)

Format] -[Set value Count value
Set value : constant, any integer type register, or any integer type register with

subscript (0 to 65535sec : in lsec unit)
Count value: any integer type register (except for # and C registers), any integer type

register with subscript (except for # and C registers)

[Description] With the off-delay timer instruction, the time is counted while the status of the
immediately preceding B register is OFF. The status of the B register becomes OFF
when "Count value = Set value".
The timer operation is stopped when the status of the immediately preceding B register
becomes ON in the middle of counting. When the B register turns OFF again, the counting
is started from the beginning (0s).
A value equal to the actual counted timeXl is stored in the count register.
With the on-delay timer instruction, the time is counted when the instruction is executed.
Therefore, pay attention when using the on-delay instruction in IF, WHILE, and FOR
structure statement.

(1) When used in IF structure statement.

MBOOOOOO

Timer @
~ B o o o i o o I(~ ~ o o o l o l

I;--(+[500 MWOOOll s] r \ U ~

In the above example, since instruction sequence @ is executed 100 times (0 d I
d 99), the timer @ is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time.

In the ahove example, when MBOOOOOO is OFF, the instruction of timer @is not
executed, time is not counted. The timer operation remains stopped.

/hen used in WHILE structure statement.

t 0 a I
WHILE
t I < 00100
ON

Timer @
MBOOOlOO I(, MBOOOlOl

1- I-[500 MWOOOll }--I
INC I

WEND

Instruction
sequence @

(3) When used in FOR structure statement

MBOOOOOO
H+

FOR I=00000 to 00099 by 00001

MBOOOlOO
14 +[5.00 MWOOO11 S]-~-l

Instruction
sequence @

In the above example, since instruction sequence @ is executed 100 times (0 5 I
5 99), the timer @ is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time.

4-31

I - Off-delay Timer Instruction: unit of measurement=l second (-I "I-) I
[Operation of the Register]

A I F I B I I I J 0:stored X:notstored
* : indeterminate

.O I O I I O I O (Stored or not stored depending on the case.)

(Ts = scan setvalue)
NOTE
In the above example, MWOOOll functions as the count register of the timer.
sure to set an unused register for the count register so that an overlap will
occur.

4. BASIC INSTRUCTIONS

-4 Examples of Relay Circuit Combinations 1-
Example of a Series Circuit

In the example below, relays are connected in series and their logical product is
output to a coil.

Examples of Branched and Parallel Circuits
Thk branch indication element is used to branch the contents of the B register to
several parts. The parallel connection indication element is used to determine the
logical sum (OR) of a plurality of relays.
In the examples below, relays are connected in series and in parallel and the result
is output to a coil or to coils.
(Example 1) Simple example of branching and parallel connection

Branch Parallel connection I

lExamole 2) Examole in which several branches and uarallel connections are used

Branch Parallel connection Branch I

Example of a Sequence Circuit with Subscript
A relay number may be used with a subscript.
In the example below, the logical product (AND) of relays MBOOOOOO
is determined and set in MBOOOO~O.

YBOOOOlO
u

FOR I=00000 to 00015 by 00001 I YBoppoooi YBooy 10 YBOOOOlO
V

FEND

I to MBOOOOOF

[AND Instruction

Logical ~~eration~~nstructions

The AND (A), OR (V), and XOR (@) instructions are available as logical operation instructions.

AND Instruction

[Description] The AND instruction outputs the logical product (AND) of the immedi;
A register and the designated register to theA register.

Format] A
I

stely precedi

-Any integer type register
Any integer t h e register with subscript .
Any double-length integer type register . .
Any double-length integer type register with subscript
Subscript register

-Constant :

l-bit Truth Table for the Logical

. .

Product (AND : A A B = C)

. .
[Operation of the Register] ' '

0: stored X : not stored

1 ;i&dd"?ft%d depending en the case.)

. .

IEgample(s)] The logical product of MWOOlOO and a constant is stored in MW00101.

4. BASIC INSTRUCTIONS

OR Instruction
XOR Instruction

OR Instruction

[Format] V Any integer type register .

Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Subscript register
Constant

[Description] The OR instruction outputs the logical sum (OR) of the immediately preceding A register
and the designated register to the A register.
1-bit Truth Table for the Logical Sum (OR : A V B = C)

[Operation of the Register]
0: stored x : not stored -1 ; f 3 t ~ d " ? ~ t ' ~ ~ ~ d d e p e n d i n w e .)

[Example(s)] The logical sum of MWOOlOO and a constant is stored in MW00101.

t-MWOOlOO V HOOFF 3 MWOOlOl
(HI234 (HO 0 ,FF) (HlmF)

XOR Instruction

[Example(s)] The exclusive logical sum of MWOOlOO and a constant is stored in MW00101.

kMWOOlOO @ H O OFF s MWOOlOl
(H5555) (H.0 OFF) (H55.4.4)

Format] @ - Any integer type register
-

Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Subscript register
Constant -

[Description] The XOR instruction outputs the exclusive logical sum (XOR) of the immediately
preceding A register and the designated register to the A register.
1-bit Truth Table for the Exclusive Logical Sum @OR : A @ B = C)

[Operation of the Register]
0: stored x : not stored
* : indeterminate
(Stored or not stored depending on the case.)

I Integer Type Entry Instruction (I-) I

4.6 Numerical Operation Instructions

Data types include the integer type, the double-length integer type, and the real number type. Refc
the Control Pack CP-9200SH User's Manual (SIE-(2879-40.1) for details.

4.6.1 Integer Type Entry Instruction

Format] I-
.

- Any integer type register
Any integer type register with subscript .
Any double-length integer type register
Any double-length integer type register with subscript
Subscript register

. Constant .

[Description] The integer type.entry instruction enters data into the A register and starts an intf
type operation. There on after, real number type data cannot be used until a real nun
type entry instruction appears.

[Operation of the Register]

A I F I B I I I J O:stOredX:notstored
* :indeterminate - ' I O I O I O I O (Stored or not stored depending on the case.)

[Example(s)] The contents of MWOOlOO are entered in the A register

The contents of ~ ~ 0 0 1 0 0 are entered in the A register.

ML00100=66770 Lower 16 bits : MWOOlOO = 01234 = H04D2
Upper 16 bits : MWOOlOl = 00001 = HOOOl

4. BASIC INSTRUCTIONS

I Real Number Type Entry Instruction ([I-) I
Real Number Type Entry Instruction ()

[Format] lk- - Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with
subscript
Any real number type register
Any real number type register with subscript
Subscript register

. Constant

[Description] The real number type entry instruction enters data into the F register and starts a real
number type operation. The series of operations beginning with a real number type
entry instruction can be programmed using integer, double-length integer, and real
number type registers. When an integer or double-length integer type register is
designated for a real number type entry instruction, the data is automatically converted
to a real number type data upon execution.

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The content of DF00200 are entered in the F register.

I k ~ F o o 2 0 0

The integer type data in DWOOlW are converted to real number type data and then stored in the F register.

The double.length integer type data in DL00100 are converted to real number type data and then stored in the F register

I I I - D W I ~ ~

It- DWOOOOO DFOOOlO
(~ 1) (1.OE +00)

I The following form of usage is not allowed.

[Storage Instruction (-) I
4.6.3 Storage Instruction

Format] - Any integer type register (except for # and C-registers)
Any integer. type register with subscript (except for # and C registers)
Any double-length integer type register (except for # and C registers)
Ahy doub1e:length integer type register:with subscript (except for # and
C registers)
Any real number type register (except for # and C registers)
Any real number type register with subscript (except for # and C registers)
Subscript register

pescription] The storage instruction stores the contents of the F register or the A register in
designated register. Whether the A register or the F register is selected is deterrrm
by the type of the immediately preceding entry instruction.
: F (Integer entry instruction) - The contents of the A register are stor
; IF (Real number entry instruction) - The contents of the F register are stor

, .

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The contents of the A register are stored in MW00100.

I ~1x345 - MWOOlOO I
The contents of the A register are stored in ML00100.

I I- 1234567 -MUH)lOo I
The contents of the F register are stored in DFOOlOO as they are in the real number for]

The contents of the F register are converted into integer form and then stored in DWOOlOl

I 1.234567 DWOOlOO 1

The contents of the Fregister are converted into double-length integer form and stored in DM01

123456.7 ~ 1 , ~ l m
(123457)

NOTE
(1) The following form of usage is not allowed.

(2) When a double-length integer type data is stored in integer type register, tl
lower 16 bits are stored as they are. Be careful since an operation error will n
occur even if the data to be stored exceeds the integer range (-32768 to 327671

. .

I- MLOOlOO MWOO2OO
(65535) (-00001)

4. BASIC INSTRUCTIONS

1 Addition Instruction (+)I
Addition Instruction (+)

[Format] + Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Any real number type register
Any real number type register with subscript
Subscript register
Constant

[Description] The addition instruction performs addition of integer type, double-length integer type,
and real number type values. An overflow operation error will occur if the result of
addition of integer type values is greater than 32767. An overflow operation error will
occur if the result of addition of double-length integer type values is greater than
2147483647.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

'1: Will not be stored if the operation starts with a E . Will be stored if the operation does not start with a E .
*2: Wfl not be stared if the operation starts with a IF . Wfl be stored if the operation does not start with a IF

[Example(s)] Addition of integer type values

~ - ~ ~ p

Addition of real number type values

NOTE
In the case of double-length integer type values, an operation using addition and
subtraction instructions (+, -, ++, --) will be a 32-bit operation. However, when an
addition or subtraction instruction is used in a remainder correction operation (where
a multiplication instruction (X) is the immediately preceding instruction and a
division instruction (+) is the immediately subsequent instruction), the operation
will be a 64-bit operation.

a X b + c 11 Remainder correction operation 0 = A

(Subtraction Instruction (-) I
4.6.5 Subtraction Instruction (;) ,

Format]

[Description] The subtraction instruction performs subtraction of integer type, double-length intel
type, and real number type values. An underflow operation error will occur if t
subtraction result of integer type values is less than -32768. An underflow operati
error will occur if the subtraction result of double-length integer type values is 11
than -2147483648.

1
;
'

'

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

*I: Will Lot be stored if the operation starts with a .Will be stored if the operation does not start with a)-
' 2 : Will not be stored if the operation starts with a IF. Will be stored if the operation does not start with a IF

-Any integer type register
.

Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Any real number type register
Any real number type register with subscript
Subscript register

.Constant -

[Example(s)] Subtraction of integer type values - M w O O l O l
(- 09345)

I- ML00102-ML00104 ML00106
(looooo) (m o)

Subtraction of real number type values

In the case of double-length integer type .values, an operation using addition an
subtraction instructions (+, -, ++, --) will be a 32-bit operation. However, when a

, addition or subtraction instruction is used in a remainder correction operation (whei
a multiplication instruction (X) is the immediately preceding instruction and

a division instruction (+) is the immediately subsequent instruction), the operatic
will be a 64-bit operation.

I I a X b + c Remainder correction operation b) = ,,

4. BASIC INSTRUCTIONS

I Extended Addition Instruction (++) I

Extended Addition Instruction (++)

[Format] ++ 'Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Subscript register
Constant

* Cannot be used in a real
number type operation begins
with a real number type
entry instruction ().

[Description] The extended addition instruction performs addition of integer type values. An operation
error will not ocnv even if the operation results in an overflow. Otherwise, the extended
addition instruction is identical to the addition instruction in function.

Integer type [Decimal ,numbers : 0- 1-32767- -32768--1-0
Hexadecimal numbers : 0000 + 0001-.7FFF+ 8000-FFFF + 0000

Double-length Decmal numbers : 0 + 1-2147483647 + -2147483648---I+ 0
integer type [Hexdecimal numbers : 00000000 + 00000001-.7FFFFFFF

+ 80000000-FFFFFFFF + 00000000

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] This instruction is used in cases where i t is desirable that operation errors do not occur
in the addition of integer type values.

operation (where a multiplication instruction (X) is the immediately preceding
instruction and a division instruction (f) is the immediately subsequent instruction), II --

1
(I the operation will be a 64-bit operation.

In the case of double-length integer type values, an operation using addition and
subtractioninstructions (+, -, ++, --) will be a 32-bit operation.
However. when an addition or subtraction instruction is used in a remainder correction

a X b + c 11 Remainder correction operation 0; A

11 I MOD ML&O~

I Extended Subtraction Instruction (--) I
4.6.7 Extended Subtraction Instruction (--)

pescription] The extended subtraction instruction performs subtraction of integer type values.
operation error will not occur even if the operation results in an underflow. Otheru
the extended subtraction instruction is identical to the subtraction instruction in fund

[Format] ..

[Decimal ,numbers . 0- I.... Integer type 32767 - 32768...1- 0
Hexadecmal numbers : 0000 -, FFFF...8000 - 7FFF.-0001- 0

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

- Any integer type register
-

Any integer type register with subscript
Any double-length integer type register.
Any double-length integer type register ,+th subscript
Subscript register
Constant -

[Example(s)] This instruction is used in cases where it is desirable that operation errors do not oc
in the subtraction of integer type values.

Cannot be used in a real

~$~:;r,",","%$
entry instruction (1)-)

NOTE
In the case of double-length integer type values, a n operation using addition
subtraction - instructions (+, -, ++, --) will be a 32-bit operation.
However, when an addition or subtraction instruction is used in a remain
correction operation (where a multiplication instruction (X) is the immedia
preceding instruction and a division instruction (+) is the immediately subseql:
instruction), the operation will be a 64-bit operation.

a X b + c
Remainder correction operation O =

Format] X

4. BASIC INSTRUCTIONS

I Multiplication Instruction (X) I
Multiplication Instruction (X)

Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Any real number type register
Any real number type register with subscript
Subscript register
Constant

[Description] The multiplication instruction performs multiplication of integer type, double-length
integer type, and real number type values. In the case of the multiplication of integer or
double-integer type values, X and + are used a s a pair. However, if an integer type
multiplication result is to be stored in a double-length integer type register, only X is
used.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

*I: Will not be gtared if the opemion starts with a k . Will be stored if the operation does not start with a k .
9: Wa not be stored if the operation starts with a l k .Will be stored if the operation d m not start with a I-.

@xample(s)] Multiplication of integer type values

I-MWoolooX3+ 10 3 MWOOlOl
(00370)

k MW00102XMW00103 + 1 =- ML00104
(OOolO) (10000)

Multiplication of double-length integer type values

I- MLOOlOO X ML00102+ 18000 - ML00104
(100000) (009000)

l-MUW)106XMLM)108+MLOO110 3 ML00112
(100000) moo00) (50000)

Multi~lication of real number tvue values

With integer type and double-length integer type multiplication, X instaction can
be used also independently. However, in this case, make a program so that the result
is within 32 bits (-2147483648 to +2147483647). When the result is within 16 bits (-
32768 to +32767), it can be stored in integer type register. When the result exceeds
16 bits, store it in double-length integer type register.

k MWOOlOO X 3 4 MWOOlOl
(01234) (03702)

t- MWOOlO2 X MW00103 =;, ML00104
(OOolO) (lOOo0) (loc@w

I ML00200 X ML00202 + MLOO204
(looooo) (oO9000) (900000000)

4-43

(Division Instruction (+) I
4.6.9 Division Instruction (+)

Format] - - Any integer type register
-

Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Any real number type register
Any real number type register with subscript
Subscript register -

. Constant -

[Description] The division instruction performs division of integer type, double-length integer t!
and real number type values. Although X and+ are usually used as a pair, + can ;
be used alone. Refer to the MOD instruction and the REM instruction concerning
remainder of a division operation. If the value of the designated register is 0, a divis
by-zero error will occur. An operation error will also occur if the result of integer, dou
length integer, or real number type division in the F register falls outside the numer
range of the A register.

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

*I: W i l l not be stared if the operation starts with a k .Will not be stored if the operation does not start with a k .

'2: Will not be stared ifthe operation starts with a .Will be stared ifthe operation doea not start with a IF.
[Example(s)] Division of integer type values

a MWOOlOl
(01234) (00411)

k MW00102+ MW00103 a MW00104
(01234) - (00003) (00411)

Division of double-length integer type values

I- ML00100XML00102+MLOOllO 1 ML00112
a m) ' (looow p 0 w (2oooW

Division of realnumber t v ~ e values

i.10 MOD Instruction

[Format] MOD

4. BASIC INSTRUCTIONS

[Description] The MOD instruction outputs the remainder of an integer type or double-length integer
type division to the A register. Execute the MOD instruction immediately after the
division instruction or after the storage instruction (a). If the MOD instruction is not
executed immediately after the division instruction, the remainder of an integer type or
double-length integer division will not be guaranteed.

[Operation of the Register]
A I F I B I I I J O:storedX:notstored

: indeterminate 1 O I O I O I O (Stored or not stored depending on the case.)

[Example(s)] The quotient of an integer type division is stored in MWOOlOl and the remainder is stored in
MW00102.

CMW00100 X 1 + 3 4 MWOOlOl
(00010) (00003)
MOD MW00102

moo1)
The quotient of a double-length integer type division is stored into MlJl0106 and the remainder is stored in
MLOO~OE.

k MLOOlOO X ML00102 + ML00104 ---\ ML00106
(lOoo'-w (@ow (34567) (173575)
MOD 4 ML00lOS

(32975)

(Note) : The quotient and remainder are generally determined together. It will thus be
convenient to use the instructions in the above manner.

1.6.11 REM Instruction

Format] REM Any real number type register
Any real number type register with subscript
Constant I

pescription] The REM instruction outputs the remainder of a real number type division to the F
register. In this case, the remainder refers to the remainder obtained by repeatedly
subtracting the variable value designated by the F register. That is, the output value Y
of the REM instruction will be as follows when the F register value is A, the value of the
designated variable is X, and the number of repeated subtractions is n:

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The remainder of the division of the real number variable MF00200 by the constant
value, 1.5, is determined and stored in MF00202.

Ii-MroO200 REM 1.5 MP00202
(4.0) (1.0)

INC Instruction

4.6.12 INC Instruction

Format] INC

. .

Any integer type register (except for # and C registers)
Any integer type register with subscript (except for # and C registers)
Any double-length integer type register (except for # and C registers)
Any double-length integer type register with subscript (except for # and
C registers)
Subscript register

(Description] The INC instruciion adds 1 to the de&atbd integer or double-length integer t:
register. In the case of an integer type register, an overflow operation error will
occur even if the'addition result exceeds 32767. Likewise, an overflow operation er
will not occur in the case of a double-length integer type register.
Integer Type

Decimal number . 0 + I....-.32767 + -32768......- 1 + 0
Hexadecimal number : 0000 - 0001---7FFF - 8000--FFFF + 0000

- Double-length Integer Type
Decimal number : 0 + 1--2147483647 + - 2147483648.-- - 1 + 0

- Hexadecimal number : 00000000 + 00000001-7FFFFFFF + 80000000
-.FFFFFFFF - 00000000

[Operation of the ~ ig i s t e r] : -

0: s&ed X : not stored
* :indeterminate
(Stored or not, stored depending on the case.)

IExamole(s)l Inteeer t w e

]I equivalent
-

I' INC MWOOlOO

Double-length integer type

]I equivalent

I INC MLOOlOO I

The followingform of usage is not allowed. ii
INC #WOO100 (#register)
INC DF00200 (real number type register)

4. BASIC INSTRUCTIONS

I DEC Instruction I

DEC Instruction

Format]
DEC l -Any integer type register (except for #and C registers)

Any integer type register with subscript (except for # and C registers)
Any double-length integer type register (except for # and C registers)
Any double-length integer type register with subscript (except for # and
C registers)
Subscript register

[Description] The DEC instruction subtracts 1 from the designated integer or double-length integer
type register. In the case of an integer type register, an underflow operation error will
not occur even if the subtraction result falls below -32768. Likewise, an underflow
operation error will not occur in the case of a double-length integer type register.
Integer Type

Decimal number : 0 - - 1.-- - 32768 + 32767---1-0
Hexadecimal number : 0000- FFFF--.8000 + 7FFF---0001- 0000

~ouble-length Integer Type
Decimal number : 0 + - 1--. - 2147483648 + 2147483647---I+ 0
Hexadecimal number : 00000000 + FFFFFFFF---+30000000 + 7FFFFFFF

.--00000001 +oooooooo

[Operation of the Register]
* I F I * 1 1 I J 0: stored X : not stored

* : indeterminate 0 1 0 1 0 1 0 1 0 (Stored or not stored depending on the case.)

[Example(s)] Integer type

I t-MWOOl00--1 3 MWOOlOO I
1 equivalent

DEC MWOOlOO

Double-length integer type - - ~-

I- MLOOlOO --I 3 MLOOlOO

1 equivalent

I DEC MLOOlOO I

NOTE
The following form of usage is not allowed.

DEC #WOO100 (# register)
DEC DF00200 (real number type register)

I Time Add Instruction (TMADD) I

4.6.14 Time Add Instruction (TMADD)

[Format] F m e toibe added]

TMADD'Any

pescription] The TMADD instruction performs addition on two time data (seconds, minutes, how
The second parameter (time to add) is added to the first parameter (time to be add
and the result is stored in the first parameter. It is essential that the formats
parameters 1 and 2 should be as shown in Table 4.12.

[Time to add]

integer type register
(except for # and C registers)
Any integer tj.pe register with
subscript (except for # and C

. - Table 4.12 Parameter Format

-

7
registers)

; Register offset' I Data contents I Data range (BCD)
., 0 I Hourdminutes I Upper byte (hours): 0 to 23,

I Lower byte (minutes): 0 to 59
1 1 Seconds I 0000 to 0059

,

When the contents of the first parameter, second parameter, and operation result a r e
the data ranges listed above, the operation is performed normally. After operation, .
B register turns OFF. Conversely, if a parameter has data that exceeds the above ran
"9999H is stored for the seconds of the parameter and the operation is stopped. Tl
the B register turns ON.

-Any integer type register
Any integer type register with
subscript

. .

[Operation of the Register] ,

0 : stored X : not stored
.

* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The time data in DW0000-DW0001 is added to the time data in MW00100-MW0010

DBOOOlOO / m D . ~ 0 0 1 0 0 , DW-o w

4. BASIC INSTRUCTIONS

I Time Subtraction Instruction (TMSUB) I
5.15 Time Subtraction Instruction (TMSUB)

pescription] The TMSUB instruction makes subtraction between two time data (hour/min/sec).
The second parameter (time subtracted) is subtracted from the first parameter (time
subtracted from), and the result is stored in the first parameter.
The formats of the &st and second parameters must be as shown in Table 4.13.

Format] m m e subtracted from] [Time subtracted]

Table 4.13 Parameter Format

TMSUB

Register offset (Data contents I Data range (BCD)
0 I Hourdminutes I Upper byte (hours): 0 to 23,

-Any integer type register integer type register
(except for # and C registers)

-

Any integer type register with
Any integer type register with subscript
subscript (except for # and C
registers) I

. .

I Lower byte (minutes): 0 to 59
1 I Seconds 1 0000-0059

When the contents of the first parameter, second parameter, and operation result are
in the data ranges listed above, the operation is performed normally. After opreation,
the B register turns OFF. Conversely, if a parmeter has data that exceeds the above
range, "9999H" is stored for the seconds of the parameter and the operation is stopped.
Then the B register turns ON.

[Operation of the Register]

A I F I B 1 I I J 0 : s to redX:no t s to red
' : indeterminate I O I O I I O I O I (Storedor not Mreddependi ion the case.)

[Example(s)] The time data in DW0000-DW0001 is subtracted from the time data in MW00100-
MWOO101.

DBOOOlOO I TMSUB MWOO100, DWOOOOO w

DWOOOOl 0016H 0016H

I Time Spend Instruction (SPEND) I
4.6.16 Time Spend Instruction (SPEND)

[Time subtracted]

Any integer type register.
Any hteger type register with
subscript I
action between two time data (YrIMolDayff

[Format] b e belng subtracted from and result]

1
[Description] The SPEND instruction performs subtr.

MinISec), and computes the elapsed time.
The second parameter (time subtracted) is subtracted &om the first parameter (ti]
subtracted from), and the result is stored in the first parameter.
The formats of the first and second parameters must be as shown in Tables 4.14 a
4.15.

Table 4.14 First Parameter Format

SPEND-Any integer type register ,
(except for # and C registers)
Any integer type register with
subscript (except for # and C
registers) I

which is obtained by
converting YearlMonthlDayI
HourIMinutelSecond. which is

Register offset
. O

1

2

3
. 4

the results of operati&, to
seconds. (Double-length
integer)

Table 4.15 Second Parameter Format

. Data contents
Year (BCD)
Month/Day (BCD)

-
Hours/minutes (BCD)

Seconds (BCD)
Total number of seconds

Register offset I Data contents Data range (BCD) UO
0 1 Year (BCD) I 0000 to 0099 IN
1 I Month/Day (BCD) 1 Upper byte (month): 1 to 12, 1 IN

When the contents of the first parameter, second parameter, and operation result ar t
in the data ranges listed above, the operation is performed normally. After operation
the B register turns OFF. Conversely, if a parameter has data that exceeds the abovf
range, "9999H" is stored for the seconds of the parameter and the operation is stopped
Then the B register turns ON.

Data range (BCD)
0000 to 0099
Upper byte (month): 1 to 12,
Lower byte (day): 1 to 31
Upper byte (hours): 0 to 23,
Lower byte (minutes): 0 to 59
0000 to 0059
This is the number of records

[Operation of the Register]

UO
INIOU
IN/OU

INIOU

INIOU
OUT

0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

4. BASIC INSTRUCTIONS

I Time Spend Instruction (SPEND) I
[Example(s)] The time elapsed from the time data in MWOOlOO to MW00103 to the time data in

DWOOOOO to DW00003 is stored to MWOOlOO to MW00105.

DBOOOlOO
r-,

SPEND MW00100, DWOOOOO v

5 mos 11 davs 15 hrs 4 min 47 - 4 mos 2 davs 8 hs 13 min
WOOlOO) WOOlOl) WOOlOZ) OrIW00103) (DWWOOO) (DWOOIOI) (DW00102) (DW00103)

NOTE
In the operation results, the year is counted as 365 days and a leap year is not
taken into consideration. Also, the number of months is not counted. It is counted
in days.

MW00103
MW00104
MW00105
DWOOOOO
DWOOOOl
DW00002
DW00003

H0047
-
-

H0098
H0402
H0813
HOOO8

H0039
3394299

(Decimal)
H0098
H0402
H0813
H0008

I INV Instruction I

4.7 Numerical Conversion Instructions

The 6 types of numerical conversion instructions shown in Table 4.16 are made available as instructic
for changing the'contents of the A register or the F register. These-instructions use the contents of 1
A register or the. F register as the input and leaves the operation result the A register or F regist

'. Table 4.16 Numerical Conversion Instructions
1

on Operation

ASCII wnvenion 2 (BINASC)

4.7.1 INV Instruction

I I I , C""Cz3.

Format] INV

[Description] Inverts the sign of the contents of the A register or F register.

ASCU wnversion 3 (ASCBIM

[Operation of the Register]

X

0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

'1: Will not be stored if the operation starts with a k .Will be stored if the operation does not start with a k
'2: Will not be stored if the operation starts with a Ik. Will be stored if the operation does not start with a Ik

Converts the ASCII wdas to binary dam and
s t o m them in A repter . 0

[Example(s)] Integer type data (A register)
I

X

Double-length integer type data (A register)

Real number type data (F register)

4. BASIC INSTRUCTIONS

I COM Instruction 1 - -

ABS Instruction

COM Instruction

Format] COM

[Description] Determines the complement of 1 of the value in the A register.

[Operation of the Register]

A I F I B I I I J
0: stored X : not.stored
* : indeterminate I C, I ' I O I (Storedor not stored dependingon the case.)

[~xarn~le(s)] Integer type data (A register)
I

FMWOOl00 COM I (H5555)
1 MWOOlOl

(HAAAA) I
Double-length integer type data (A register)

ABS Instruction

Format] . ABS

[Description] Determines the absolute value of the value in the A register or F register.

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

'1 :Will not be stored ifthe operation starts with a .Will be stored if the operation does not start with a I- .
'2 : Will not be stored ifthe operation starts with a IF . Will be stored if the operation does not start with a b .

~xarnple(s)] Integer type data (A register)

I- MW00100 ABS M w O O l O l
(-00100) * (00100)

Double-length integer type data (A register)

I- MIA0100 ABS MIA0102 I (100000) * (100000) I
Real number type data (F register)

. 4.7.4 BIN Instruction

Format] BIN

[Description] This instruction converts a numeral expressed in BCD in the A register into a bin
number (BIN conversion). If the (4-digit) numeral expressed in BCD in the integer t
A register is abcd, the output value Y of the BIN instruction can be determined by
following formula:

Y=(a X 1000)+@ X 100)+(c X 10)+d
Although the above formula will be applied even if the numeral in the A register is
of a BCD expression (e.g. 123FH, etc.), a correct result will not be obtained in si
cases.

[Operation of the Register]

A I F I B (1 I J 0: stored X : not stored
* : indeterminate 1 ° 1 0 1 0 1 0 (Stored or not stored depending on the case.)

[Example(s)] integer type data (A register)

F MWOOlOO BIN MWOOlOl 1 (H1234) *@01234) I
Double-length integer type data (A register)
I

I I- MM0100 BIN
: (H12345678)

4.7.5 BCD Instruction

Format] BCD

pescription] This instruction converts a numeral expressed in binary in the A register into a BC
expression (BCD conversion). If the (4-digit) decimal expression of the numeral in tl
integer type A register is Oabcd, the output value Y of the BCD instruction can 1
determined by the following formula:

Y=(a X 4O96)+@ X 256)+(c X 16)+d
Although the above formula will be applied even if the numeral in the A register cann
be expressed m BCD (e.g. a number over 9999, negative numbers, etc.), a correct resu
will not be obtained in such cases.

[Operation of the Register]

0: stored X : not stored
* : indetermihate
(Stored or not stored depending on the case.)

Fample(s)] integer type data (A register)

I F ~ ~ 0 0 1 0 0 BCD MWOOlOl
(D01234) ' -01234) I

Double-length integer type data (A register)

F ML0OlOO BCD ML00102
(D12345678) j(H12345678) 1

4. BASIC INSTRUCTIONS

PARITY Instruction

Format] PARITY

[Description] This instruction is used to compute the number of binary expression bits that are ON
(=I) in the A register.

[Operation of the Register]
A I F I B I I I J 0:s toredX:nots tored

* : indeterminate I O I O I O I O (Stored or not stored depending on the case.)
[Example(s)]

Integer type data (A register)

I- MWOOlOO PARITY M w O O l O l I @FOFO) (OOOOS) I
Double-length integer type data (A register)

I- m 0 1 0 0 PARITY MW00102 I (HFOFOFOFO) *(00016) I
ASCII Instruction

Format]
[Storage register number]

Any integer type register (except for #

]
[ASCII characters

and C registers)
Any integer type register with suhsn'ipt
(except for # and C registers 1''

[Description] The ASCII instruction converts the speciiied character string in the instruction to ASCII
codes, and stores them in the designated storage register.
These are stored in the order: first character, lower byte of the first word, second
character, upper byte of the first word. If the length of the character string is odd, the
upper byte of the last word in the storage register is a 0. A maximum of 32 characters
may be entered.

ASCII VWOO000 G "character string"
U~oer bvte Lower hvte

vw OClOOO

h character

I

I I I n th character 1
I ?-If the length of the character string is odd, the upper byte

of the last word in the storage register is a 0.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] (1) The character string "ABCD" is stored in MWOOlOO to MW00101.

ASCII MWOOlOO "ABCD"
Upper Lower

MwOOlOO
MwOOlOl

42H ('B') 41H ('A') MW00100=4241H
44H ('D') 43H ('C') MW00101=4443H

!

Format] (2) The character string "ABCDEFG" is stored in M W O O l O O to MW00103.

I : ASCII M W O O l O O "ABCDEFG"

MWOOlOO MW00100=4241H
MWOOlOl MW00101=4443H
MWOO102 MW00102=4645H
MWOO103 Mw001031)047H

A "0" is entered in the extrabyte.
. -

4.7.8 BINASC Instruction
Format]

BINASC

[Storage register number]
integer type register

for # and C registers)
type register with subscript
and C register)

[Description] The BINASC i n s t ~ c t i o n converts the 16-bit binary data stored in the A register t
four d~git hexadecimal ASCII code and stores it in the designated storage register (t
words).

C HXYZW (Hexadecimal i n ~ u t data)
(storage registerj

In the case of BINASC VW[10000

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

Upper byte Lower byte

. .

[Example(s)] ' h e "1234HU binary data stored in the A register is converted to a four digit hexadecim
ASCII code and stored in MWOOlOO to MW00101.

,I ~ 1 2 3 4
BINASC MWOOlOO

V=S, I, 0, M, D
' VWtiUOtiU

VWODO00+1

Upper byte Lower byte
MwOOlOO 32H ('2') : 31H ('1') MW00100=3231H
MwOOlOl 34H C4') t 33H ('3') MW00101=3433H

. .

Third digit (Y) i Fourth digit (X)
First digit (W) f Second digit O

4. BASIC INSTRUCTIONS

I ASCBIN Instruction 1

ASCBIN Instruction

Format] [Storage register number]
Any integer type register
Any integer type register
with subscript 1

pescription] The ASCBIN instruction converts a numerical value expressed in a four digit hexa-
decimal ASCII code to 16-bit binary data. The converted result is stored in the A
register.

In the case of ASCBIN VWOOOOO (Conversion source register)

Conversion source register A register

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

Upper byte Lower byte Upper Lower

[Example(s)] The four-byte ASCII code stored in MWOOlOO to MWOOlOl is converted to two-byte
binary data, and the result is stored in MW00200.

VW DOOOO
VWOEU00+1

I ASCBIN MWOOlOO 3MWOO200 I

Data to be converted A register

V=S, I, 0, M, D

Third digit (Y) : Fourth digit (X)
First digit (W) ; Second digit (Z)

-+I X Y I Z W I

Upper Lower Upper Lower
MWOOlOO
MWOOlOl

32H ('2') 31H ('1')
34H ('4') 33H ('3')

j MW00200 I . 12H I 34H

I Com~arison Instructions I

4.8 Numerical Comparison Instructions

4.8.1 Comparison lnstructions

There are 6 types of comparison instructions for comparing numerals and inspecting equivale
relationships.

-& integei type register
Any integer type register with subscript
Any doublerlength integer type register
Any double-length integer type register with subscript
Any real number type register
Any real number type register with subscript
Subscript rk&er
Constant

Format]

Description] A comparison instruction stores the result of comparison of the immediately preced
A or F register and the designated register in the B register (ON when true).

- -
c
5
- -

L
>

- -

[Operation of the Register]
0 f stored X : not stored
* : indeterminate 1 (Stored or not stored depending on the case.)

[Example(s)] (1) If the value of MWOOlOO is not 100, the i n s t ~ c t i o n s from IFON and below
executed.

MBOOOlOA
~ ~ 0 0 1 0 0 # 00100 -

If you want to use the comparison result in a subsequent instruction, it is conveniel
to accept the comparison result with the coil. Unless the value of MWOOlOO is 101
MWOOOlOA is set to ON.

MBOOOlOA
r\ I

t- hQVOOl00 # 00100
: Instruction sequence

B'"<
E O l k + MW00102 +MW00103 =)MW00104

t Ivlyo0102

This comparis
result is used

4. BASIC INSTRUCTIONS

I Com~arison Instruction I

NOTE
1. Use the NO contact instruction if an IFON (IFOFF) or ON (OFF) instruction is to

be used after receiving the comparison result with a coil.

MBOOOlOA
__0__(t MWOOlOO * 00100

vf?'ie IFON

2. When making a comparison of real number type registers, use a IF instruction
before the comparison instruction.

IF 1.1 + 1.0 3DFOOOlO
DB000200 + 2.1

3. In the case of real number type data, since there is a minute precision difference
in the data displayed on the CP-717, the execution result of a comparison
instruction may not coincide with an apparent result.

Wrong
--

IF 1.1 + 1.0 DFOOOlO
DB000200

IF DFOOOlO + 2.1 I

4. Do not use instructions otber than coil instruction when receiving the comparison
result with a coil.

Correct

MBOOOlOA I t MW00100 * 00100 7 - 1 I
I MBOOOlOB MBOOOlOC I I 1 MBO9ylOA ' + /

MBOOOlOA
MWOOlOO + 00100 -

I MBOOOOlOA MBOOOOlOB MBOOOOlOC
F+*-

W P
IFgN

-

J
Correct

I Range Check lnstmcrion (RCHK) I

4.8.2 Range Check Instruction (RCHK)

Format] [Lower limit]
'Any integer type register
'Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register
with subscript
Any real number type register
Any real number type register with
subscript
Subscript register
Constant -

[Upper limit]

. .
pescription] 'The RCHK instruction examines the contents entered in the A register whether il

within the specified range or not. The result is output to the B register. The conte~
of the A registerare kept.
: (input value)

Result .
! RCHK . b w e r limit], pppe r limit] -c-I

,

* If the input value (A register) is greater than the lower limit and less than t h ~
upper limit, the result (B register) = ON.

* In the cases other than the above, the result (B register) = OFF.

-Any integer type register
Any integer type register with subscr
Any double-length integer type regisl
+y double-length integer type regis)
with subscript
Any real number type register
Any real number type register wi
subscript
Subscript register
Constant -

[Operation of the Register] .
A I I B I I I J 0: stored X : not stored

* : indeterminate
O I O I I O I O (Stored or not stored depending on the case.)

[Example(s)] W For integer type operation

k ~ ~ 0 0 1 0 0
DBOOOOOO

RCHK -1000. 1000

-. . . - - -

MW00100>1000 I OFF

Input (MW00100) I Output (DB000000)

I For double-length integer type operation

-1ooo>MWoo1oo

DBOOOOOO I

OFF
-1000~MW0010011000 I ON

RCHK -100000, 100000 I
Input ~ 0 1 0 0)

-100000>MLQ0100
-100000SMU)0100S100000
~ 0 1 0 0 > 1 0 0 0 0 0

Output (DB000000)
OFF
ON
OFF

4. BASIC INSTRUCTIONS

I Ranee Check Instruction EtCHKI I

For real number type operation

I DBOOOOOO I
RCHK -10.5, 10.5

Input (DF00100) I Output (DB000000)
-10.5>DF00100 OFF .-.

-10.5SDF00100S 10.5 ON
DF00100>10.5 I OFF

I ROTL Inst~ctionlROTR Instruction 1

4.9 Data Operation Instructions

4.9.1 ROTL Instruction and ROTR Instruction

Format1 [Head Bit Address] [Number of Rotations] [Bit Width]

Any integer type regis
Any integer type regis
with subscript
Constant

bit type register -
(except for # and

Any bit type register
. with subscript -

(except for # and

[Description] The ROTL (or ROTR) instruction is used to perform rotation, in the leR (or right) direct
for the number of times designated, on the bit table designated by the head bit addr
and the bit width.

k- it width(m) --A

N= h y integer type register w=
Any integer type ree t er
with s u b e p t

m-1 m-2 m-3 Head bit addrest

I - 1 . 1 - 1 . l . t
Number of rotations

-c reesters)

Fig. 4.5 The ROTL Operation

[Operation of the Register]
0: stored X : not stored

: indeterminate
(Stored or not stored depending on the case.)

[Example(s)] (1) ROTL The data having MBOOOOOA (bit A of MW00000) as the head address an
bit width of 10 are rotated five times to the left.

ROTL MBOOOOOA N=5 W=10

Rotation symmetry range (Bit width = 10)
d:

After
execution

(2) ROTR The data having MBOOOOOO (bit 0 of MW00000) as the head address and
bit width of 10 are rotated once to the right.

ROTR MBOOOOOO N=l W=10

4
F C 8 4 0

After execution rll 11 11 1101'01 11 1101 010ll1 ll01110] -

4. BASIC INSTRUCTIONS

[MOVB Instruction I
MOVB Instruction

Format] [Address of Transfer Source Bit] [Address olTmnsfer Destination Bit] flumber of Transfers]

Any integer type register

(except for # and C Any integer type register
with subsrript

Any bit type register Constant
-with subscript

[Description] The MOW3 instruction transfers the designated number of bit data, starting from the
head of the transfer source bits, to the transfer destination, which starts from the address
of the head transfer destination bit. The transfer is carried out 1 bit a t a time in the
direction in which the relay number increases.
Although the bit table of the transfer source will be stored as long as the transfer source
bits and transfer destination bits do not overlap, caution is needed when the bits do
overlap.

MOW3 [Transfer => [Transfer Destination W= [Number of
Source Register Register No.] Transfers]
No.] I I "m"fJ destination

Transfer source Transfer destination Transfer source Transfer destination

k- Number of transfers (m)
m-1 m-2 m-3

Address of the
5 4 3 2 1 0 -head transfer

When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)

1 0 1 1 1 1 1

[Operation of the Register] I

0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

4-63

1 1 1 1 1 1 1 1 Address ofthe -
1 0 1 1 1 1 1 1 I I O I 1 O I 1 head destination transfer bit

1 1 source bit 0 1 0 1

I MOVB Instruction 1
[Example(s)] The 10 bits of data starting from MBOOOOOO @it 0 of MW00000) are transferred

MBOOOOlO (bit 0 of MW00001).

1 . MOVB MBOOOOOO 3 MBOOOOlO W=10 I

. . . i- 'Transfer ran
~ 0 0 0 0 0 ~ 1 ~ 0 ~ 0 ~ 1 ~ 1 ~ 0 ~ 1 ~ 1 ~ 0 ~ 0 ~ 1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 1

MWoooo1 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 ~ 1 ~ 1 ~ 1 ~ 0 10111011 101.

: After tranqfer
: I

4. BASIC INSTRUCTIONS

[MOVW Instruction I
MOVW Instruction

Format] Mom P;sfer S o m Register No.l, , P a n d e r Destination Register No.] [Number of Transfers]

~ n y integer type register =) Any integer type register W= Any integer type register

Any integer type register (except for # and C registers) I I Any integer type register
Any integer type register with with suhs+pt ..

with subscript subscript (except for # and C Constant
registers)

[Description] The M O W instruction transfers the designated number of words of data, starting
&om the head of the transfer source registers, to the transfer destination, which starts
h m the address of the head transfer destination register. The transfer process is carried
out 1 word at a time in the direction in which the register number increases.
Although the transfer source will be stored as long as the transfer source and the transfer
destination do not overlap, caution is needed when these do overlap.

M O W Pansfe r Source Register No.] =)PRansfer Destination Register No.] W= Fumber of Rmsfers]

Transfer source Transfer destination

When the transfer source and
transfer destination overlap (1)

Transfer Borne Transfer destination

When the transfer source and
transfer destination overlap (2)

[Operation of the Register]
0 : stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

@xample(s)] The word data MWOOOOO to MW00009 are transferred to MWOOlOO to MW00109.

I MOVW MWOOOOO MWOOlOO W=OOO10 I

MWOOOOO pizr-1 MWOOlOO 1234H

I XCHG ~nstrudionl

4.9.4 XCHG Instruction

Format] p a t a Table 11 [Data Table 21 pumber of Ransfen
. Any integer type register Any integer type register W= Any integer type regi

(except for # and, C registers) (except for # and C 1 i Any integer type regi
Any integm type register with registers) with subscript
subxript (except for# and C Any integer-type register Constant
registers) #and with subscript C registers) (except for

pescription] . The XCHG instruction is used to exchange the contents of data table 1 and data tab1

'XCHG p a t a Table 11 3 [Data Table 21 W = [Number of Transfers]

Data Table 1 Data Table 2 Data Table 1 Data Table 2

Before execution of the Afler execution of the
XCHG instruction XCHG instruction

[Operation of the Register]
0: stored X : not stored

0 0 0
* : indeterminate
(Stored or not'stored dependkg on the case.)

wxample(s)] The contents of MWOOOOO to MW00009 are exchanged with those of MWOOlOO
MW00109. , - .

XCHG MWOOOOO MWOOlOO W=00010

4. BASIC INSTRUCTIONS

I S E W Instruction I
SETW Instruction I

[Format] [Transfer Destination Register No.] p a t a to be Transferred] [Number of Transfers]

Any integer type register (except I D = [Any integer type register
for # and C registera) Any integer type register
Any integer type register with with subscript
subscript (except for # and C Constant Constant
registers) I

pescription] The SETW instruction stores the data designated as transfer data in all registers
designated by the transfer destination register number and the number of transfers.
The storage process is carried out by 1 word in the direction of increasing register
number.

Transfer data Transfer destination area -
00000 vw 00000 + Transfer

vw 00000+i destination

vw 00000+2 reg'ster no.

[Example(s)] The contents of MWOOlOO to MW00119 are set to 0.

[Operation of the Register]
0 : stored X : not stored

SETW MWOOlOO D=00000 W=00020

A I I I I
0 (0 1 0 I 0 I 0

* :indeterminate
(Stored or not stored depending on the case.)

Number
of
Transfers

4-67

Transfer data Transfer destination

00000 00000 -
00000

00000

00000. .

00000

00000 -

MWOOl00
MWWlOl
MW00102

MW00103

MW00118
MW00119

I BEXTD Instruction I

4.9.6 BEXTD Instruction

. .
Format] [Transfer Source Register No.]

Any integer t& register to
Any integer type register *_ [_ subscript]

[Transfer Destination Register No.] wumber of Ransfers]

I , ,

Any integer type register Any integer type registe
(except for # and C registers) Any integer type registe
Any integer type register with with subscript
subscript (except for # and C Constant
registers)

[Description] The BEXTD instruction stores the byte sequence stored in the transfer source regis
area byte by byte in the word sequence of the transfer destination register. The up]
byte of the transfer destination register is "0."

In the case of BEXTD VWOOODO to VWAMAA B=N

I
[Operation of the Register]

I . I . I 0:s tored X:notstored
A 1 I D I I 1 0 * : indeterminate I / 0 I 0 I 0 I 0 1 (Stored or not stored depending on the case)

[Example(s)] The 5 bytes beginning with MWOOlOO are expanded into five words beginning wil
MW00200.

I BEXTD MWOOlOO t o MW00200 B=00005

MWOOlOO
MWOOlOl
MW00102

MW00103

MW00104

4. BASIC INSTRUCTIONS

I BPRESS Instruction I
BPRESS Instruction

Format] mansfer Source Register No.] W s f e r Destination Register No.] pumber of Transfer bytes]

Any integer type register Any integer type register Any integer type register

Any integer type register (except for # and C registers) Any integer type register

with subscript
registers)

[Description] The BPRESS instruction stores the lower byte of the word sequence stored in the transfer
source register area in the byte sequence of the transfer destination register area. The
upper byte of the transfer source register is ignored. This is the reverse of the BEXTD
instruction.

 umber of
Transfers
(Number of
bytes) i -

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The 5 words beginning with MWOOlOO are compressed into five bytes beginning with
MW00200.

11H (Upper byte)
12H - - - - - - - - - - - MW00201
13H

- - - - - - - - -
When the number of transfered
bytes is an odd number, "0" is set.

MW00104 - - - - - - - - -

~ B S R C H Instruction (

4.9.8 BSRCH Instruction

Format] mead number of. [Range word number] [M data1
the search range]

W Any integer type register 1 I Any integer type register
with subserid

1 1 Anyrealnumbertype
*with M p t
Canataot

'D=-Any

,

.

[Search result]

i n t e p type register
Any integer type register
with M p t
Any donbl.-length integer
type-
Any double-length integer
t y p r e ~ + t h s u b s r i p
Anyr-Jnvmbertype
=?+-

Pescription] ' h e BSRCH instrukion uses a binary search method to search for the specified da + the specified search range. The search results (offset number of the search ran
head register number of matched data) are stored in the specified register.
Before the execution of the BSRCH instruction, it is necessary that the data in t:
search range be sorted in ascending order. If this is not done, the result will not . .
correct.
In addition, the result will not be correct if there are two or more identicaldata.
If no . matched ~ data is found, "-1" is stored.

. .

R=

[Operation of the Register]
0: stored X i not stored
' : indeterminate -1 (Stored or not stored depending on the case.)

-Any ink& type leg
(except for# and C
re&tns)
Any integer type re1
with submipt (ace
t aad C re*)

[Example(s)] Data matching with 01234 are searched for in registers MWO0100 to MW00199, a~
the result is stored in register DW00000.

BSRCH MWOOlOO W=100 D=01234 R=DW00000

MWOOlOO 00002
MWOOlOl 34567

MW00102 Offset number of MWOOlOO is stored
in DW00000.
DWOOOOO 00102 - 00100

T t
MW00102 MWOOlOO

SORT Instruction

Format] mead number of the sort range]

4. BASIC INSTRUCTIONS

SORT

I SORT Instruction I

-
Any integer type register
(except for # and C registers)
Any integer type register with subscript
Any doublelength integer type register
(except for # and C registers)
Any double-length integer type register
with subscript
Any real number type register
(except for # and C registers)

piumber of range registers]

Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register
with subscript
Any real number type register
Any real number type register with subscript

-Any real number type register with subscript

[Description] ,me SORT instruction arranges data in the specified register range in ascending order.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

~xample(s)] The data in registers MWOOlOO to MW00199 are sorted in ascending order.

SORT MWOOlOO W=00020 1

[SHFTL Inst~ction/SHFl?i Instruction I

4.9.10 SHFTL Instruction and SHFTR Instruction

Format] [Head Bit Address] plumber i f shifts]' [Bit Width]

Any intege~ type regist
Any integer type regis!
with subscript
Constant .

[Description] The S H m (SHUT%) instruction shifts to the left (right) by only the specified nun
of shifts the bit sequence specified by head bit address and bit width.
As shown in Fig. 4.6, bit data that overflows the bit width is thrown away, and insuffic
hits become 0.

k- Bit width(m) --4

. .

After
execution b X P O 0 0 0

m-1 m-2 m-3 m-4 m-5
Before , . O + Headbit address

Number + of shifts -4
- -- -

0 is entered

~ X 1 X I X L X P execution

Fig. 4.6 The SHIFT Operation

. .
L l W X r s k b

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

IExample(s)] (1) SHFTL A ten-bit wide section of data with MBOOOOOA @it A of MW00000) as t:
head is shifted five bits to the left.

SHFTL MBOOOOOA N=5 W=10 1
Shift 5 bits to the left.

./ A: .
. MWooooo ~ 1 ~ 1 ~ 0 ~ 0 ~ 0 ~ 1 ~

MWooooo

MWOOOOl
Note: The upper five bits

are thrown away.

(2) SHFTR A five-bit wide section of data with MB00005 (bit 5 of MW00000) as t'
head is shifted three bits to the right.

I SHFTR MB000005 N=3 W=5 I

MWOOOOO The lower three bi -
0 is entered.

are thrown away.

4. BASIC INSTRUCTIONS

[COPYW ~nstructionl

COPYW Instruction

Format] [Ransfer Source Register No.] pander Destination Register No.] piumber olTranders]

w= Any integer type register
(except for # and C registers) Any integer type register
Any bit lype register with subscript
(except for # and C registers)

[Description] The COPYW instruction transfers the specified number of word data to the head of the
transfer destination register from the head of the transfer source register. The transfer
operation copies the data in a block fi-om the transfer source to the transfer destination.
Even if there is overlap between the transfer source and the transfer destination, the
full transfer data block is copied to the transfer destination.

COPYW [Transfer => [Transfer source W= Wumber of
destination register no.] transfers]
register no.]

I I I

Transfer source Transfer destination Transfer source Transfer destination

When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)

[Operation of the Register]
0: stored X : not stored
* : indeterminate 1 (Stored or not stored depending on the ca

[Examples(s)] The word data of MWOOOOO to MW00009 are transferred to MWOOlOO to MW00109

I COPYW MWooooo => MW00100 W=00010

MWooooo

MWooo01
MW00002

1133H
1234H

transfer

MWOOlOO

MWOOlOl
MW00102

I BSWAF! Instruction I

4.9.12 BSWAP Instruction

Format] [Target register number]
Any bit type register
(except for # and C registers)
Any bit type register with subscript
(except for # and C registers)

pescription] The BSWAP instruction swaps the upper and lower bytes of the specified register.
parget register)

In the case of BSWAP VWOOOOO

vwnon00 V W O O O M
Upper Lower Upper. Ldwer V=S, I, 0, M, D

I n I b 3 1 b I a . 1 ' -
I u

Before swap After swap

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

pxample(s)] The upper and lower bytes of MWOOlOO to MW00102 are swapped.

= 00000 to 00002 by 00001

BSWAF' MWOOlOO i

Upper Lower Upper Lower

'I00100 I I00100 T I
Before swap . After swap

Upper Lower Upper Lower

MWOolol I 13H I 44H I a MW00ioi 1 44H I 13H I -
Before swap

I I

After swap

Upper Lower Upper . Lower

IOOlOl prpq 5(H 100102 -1
Before swap After swap

4. BASIC INSTRUCTIONS

I SQRT Instruction I

Basic Function Instructions

SQRT Instruction

Format] SQRT

[Description] This instruction leaves the square root of integer type or real number type data as the
operation result. The input unit and the output result will differ according to whether
the data are of an integer type or a real number type. This instruction cannot be used
for double-length integer type data.

Integer Type Data
The operation result will differ slightly from the square root in mathematical terms.
To be more precise, the operation result is expressed by the following formula:

32768 X sign(A) X SQRT(l A 1132768)
sign (A) : sign of register A
I A I : absolute value of register A

That is, the operation result will be equal to the mathematical square root multiplied
by 128 r 2 (approx. 181.02). When the input is a negative number, the square root of
the absolute value is determined and the negative of this square root is left as the
operation result in the A register.
The maximum operation error of the output value is f 2.

Real Number Type Data
The immediately preceding operation result (F register) is used as the input and the
square mot thereof is left in the F register. When the input is a negative number the
square root of the absolute value is determined and the negative of this square root is
left as the operation result in the A register. This instruction can be used inside a
real number type operation.

[Operation of the Register]

I X I U I U 1 U I U I (Stored or not stored depending on the case.)

Real number type data 0: stored X : not stored
* : indeterminate

0 0 (Stored or not stored depending on the case.)

[Example(s)] Integer type data
When the input is a positive number
r

When the input is a negative number

EMWOO100 SQRT e MW00102
(-01448) I

Real number type data
When the inmt is a ~ositive number

kDF00200 SQRT I (64.0)

When the input is a negative number

IF DF00200 SQRT 3 DF00202
(- 64.0) (- 8.0)

I SIN Instruction 1
4.10.2 SIN Instruction

Format] SIN

[Description] This instruetion leaves the sine of integer type or real number type data as the opera
result.,The input unit and the output result will differ according to whether the (
are of an integertype or a real number type This instruction cannot be used for doc
length integer type data.
.

Integer Type Data
This instruction can be used in the range -327.68 - 327.67 degrees.
immediately preceding operation result (A register) is used as the input (1 = I
degrees) and the operation result is left in the A register.
Upon output, the operation result is mulhplied by 10000.
If a number outside the range -327.68 to 327.67 is mistakenly entered, a cor
result will not be obtained. For example, if 360.00 is entered, a result of -29!
degrees is output.

Real Number Type Data
The inimediately preceding operation result (F register) is used as the input (1

= degrees) and the sine thereof is left in the F register. This instruction cal
used inside a real number type operation.

[Operation of the Register]
Integer type data

0 : stored X : not stored -1 * :indeterminate
(Stored or not stored depending on the case.)

Real number type data
0 : stored X : not stored
* : indeterminate

O O O (Stored or not stored depending on the case.)

@xampIe(s)] Integer type data

kMW00100 SIN ? MW00102
(03Ow (OSOw

Input .O. =I30 degrees (MW00100 = 30 X 160 = 3000)
Output SIN(6) = 0.50 (MW00102 = 0.50 X 10000 = 5000)

Real number type data
I

4. BASIC INSTRUCTIONS

1 COS Instruction I
COS Instruction

[Format] COS

[Description] This instruction leaves the cosine of integer type or real number type data as the
operation result. The input unit and the output result will differ according to whether
the data are of an integer type or a real number type. This instruction cannot be used
for double-length integer type data.

Integer Type Data
This instruction can be used in the range -327.68 - 327.67 degrees. The immediately
preceding operation result (A register) is used as the input (1 = 0.01 degrees) and
the operation result is left in the A register.
Upon output, the operation result is multiplied by 10000.
If a number outside the range -327.68 to 327.67 is mistakenly entered, a correct
result will not be obtained. For example, if 360.00 is entered, a result of -295.36
degrees is output.

Real Number Type Data
The immediately preceding operation result (F register) is used as the input (unit
= degrees) and the cosine thereof is left in the F register. This instruction can be -
usedinside a real number type operation.

[Operation of the Register]

I I u I u I u I u I (Stored or not stored depending on the case

[Example(s)] Integer type data

I-MWWlOO COS 3 MW00102
(06000) (OSOo'J)

Input 8 = 60 degrees (MW00100 = 60 X 100 = 6000)
Output COS(8) = 0.50 (MW00102 = 0.50 X 10000 = 5000)

Real number type data
0: stored X : not stored

Real number t w e data

A ' I I I I
0 I I 0 [0 I 0

* :indeterminate
(Stored or not stored depending on the case

4.10.4 TAN Instruction

Format] . TAN

[~esc r i~ t ion] . Withthe TAN &ruction, the immediately preceding operation result (F registel
used as the input (unit = degrees) and the tangent thereof is left in the F register. 'I
instruction can be used inside a real number type operation.

[Operation of the Register] : + . .
,. . , , , ~, . , , . , , , 0 : stored X : not stored

[Example(s)] The tangent of the input value (0 = 45.0 degrees) [TAN(0) = 1.01 is calculated.

In ~r I D 1 1 I J

0 I I 0 I 0 I 0

IEDF00200 TAN
(45.0)

* : indeterminate
(Stored or not stored depending on the case.)

4.10.5 ASlN instruction

Format] ASIN

pescription] With the ASIN instruction, the immediately preceding operation result (F registel
used as the input (unit = degrees) and the arc sine thereof is left in the F register. 3
instruction can be used inside a real number type operation.

[Operation of thb Register]
0: stored X : not stored
* : indeterminate 1 (Stored or not stored depending on the case.)

[Example(s)] The arc sine of the input value (6' = 0.5) [ASIN(0.5) = 6' = 30.0 degrees] is calculat

4.10.6 ACOS Instruction

Format] ACOS
-

[Description] With the ACOS instruction, the immediately preceding operation result (F register)
used as the input (unit = degrees) and the arc cosine thereof is left in the F registe
This instruction can be used inside a real number type operation.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate -1 (Stored or not stored depending on the case.)

[Example(s)] The arc cosine of the input value (0 = 0.5) [ACOS(0.5) = 0 = 60.0 degrees] is calculate

IE DF00200
(0.5)

ACOS

4. BASIC INSTRUCTIONS

I ATAN Instruction I
ATAN Instruction

Format] ATAN

pescription] This instruction leaves the arc tangent of integer type or real number type data as the
operation result. The input unit and the output result will differ according to whether
the data are of an integer type or a real number type. This instruction cannot be used
for double-length integer type data.

Integer Type Data
This instruction can be used in the range -327.68 to 327.67. The immediately
preceding operation result (A register) is used a s the input (1 = 0.01) and the
operation result is left in the A register.
Upon output, the operation result is multiplied by 100 degrees.

Real Number Type Data
The immediately preceding operation result (F register) is used as the input and
the arc tangent thereof (unit = degrees) is left in the F register. This instruction
can be used inside a real number type operation.

[Operation of the Register]

I 1 u I u I u I U I (Stored or not stored depending on the case.)

Real number type data
0 : stored X : not stored

A I I I I I * : indeterminate
0 I 1 0 1 0 1 0 (Storedor not stored depending on the case.)

[Example(s)] Integer type data

Input X = 1.00 @WOO100 = 1.00 X 100 = 100)
Output 8 = 45 degrees (MW00102 = 45 X 100 = 4500)

Real number type data

4.10.8 EXP lnstruction~

Format] EXP

pescription] With the EXP instruction, the immediately preceding operation result (F registel
used a s the input (x) and the natural logarithmic base (e) to the power of the in
value (e3 is left in the F register as the operation result. This instruction can be u
only inside a real number type operation.

[Operation of the Register] .
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

~xarnple(s)] e (= 2.7183) to the power of the input value (x = 1.0) is calculated.

Il-DFW200 EXP * DW202
(1.0) (2.7183)

4.10.9 LN Instruction

LN Format]

[Description] With the LN instruction, the immediately preceding operation result (F registel
used as the input (x) and the natural logarithm (Logex)thereof is left in the F registe
the operation result. This instruction can be used inside a real number type operat

[Operation of the Register]
0: stored X : not stored
' : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] Calculate the natural logarithm of the input value (x = 10.0) [Iage(x) = 2.30261.
I

4.10.10 LOG Instruction

Format] LOG

pescription] With the LOG instruction, the immediately preceding operation result (F register)
used as the input (x) and the common logarithm (loglo') thereof is left in the F regist'
as the operation result. This instruction can b< used inside a real number type operatio

[Operation of the Register]
0: stored X : not stored
* : indeterminate 1 (Stored or not stored depending on the case.)

[Example(s)] The common logarithm of the input value (x = 10.0) [Loglo(x) = 1.01 is calculated.

Il-DFOOZoo LOG a DF00202
(10.0) (1.0) .

4. BASIC INSTRUCTIONS

I DZA Instruction I

DDC Instructions

DZA Instruction

The DZA instruction executes a dead zone operation on integer, double-length integer,
or real number type data. Where X is the input value, D is the designated dead zone
value, and Y is the output value, the following operation is performed:

(a)Y=X(IXI 2 IDI)
@)Y=O(IXI < IDI)

Format] Designated Dead Zone Value]

Fig. 4.7 Operation of the DZA Instruction

DZA

[Operation of the Register]
A I F 1 B I I 1 J 0:stored X:notstored

* : indeterminate
'I 1 *' 1 O I O I O

(Stored or not stored depending on the case.)
'1: Will not be stored if the owration starts withal- . Will be stored if the ooeration dws not start d h a

-Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Any real number type register
Any real number type register with subscript
Subscript register

.Constant

~ ~~ ~~ .
-2: Will not be star4 if the operation starts with a I-. Will be stored if the operation does not start with a I-.

[Example(s)] Integer type operation

t- MW00100
(00150)
(00050)

DZA 00100 3 MW00102
(00150)
(00000)

+- Outside dead zone
t Within dead zone

Double-length integer type operation

MLOOlOO
(200000)
(050000)

DZA 100000 3ML00102
(200000)
(000000)

+- Outside dead zone
+- Within dead zone

I DZA Instruction 1

Real number type operation

4.11.2 DZB Instruction

IF DF00200 :
(150.0)
(50.0)

DZA 100.0 5 DFOOZOZ
(150.0)
(0.0)

+- Outside dead zol
t Within dead zon

11

e

[Description] The DZB instruction executes a dead zone operation on integer, double-length integc
dr real number type data. Where X is the input value, D is the designated dead zo.
h u e , and Y is the output value, the following operation is performed:

(a)Y=X-ID1 (1x1 2 IDI,XzO)
(b) Y = X + ID1 (1x1 2 IDI,XsO)
(c)Y=O(IXI < IDI)

..
*

Format] [Designated Dead Zone Value]

' Fig. 4.8 Operation of the.DZB Instruction

DZB

,

[Operation of the Register]
l . F I B I I I J 0:s tored x:notsfored

* : indeterminate
*' 1 *' 1 O I O I O (Stored or not stored depending on thk case.)

:I: Will not be stored if the operation starts with a k . Will be stored if the operation does not start with a t .
$2: Will not be stored if the operation starts with a It. Will be stored if the operation daes not start with a it.

-Any integer type register
-

A n y integer type register with subscript
A n y double-length integer type register
A n y double-length integer type register with subscript
Any real number type register
A n y real number type register with subscript
Subsn'ipt register
Canstant . .

4. BASIC INSTRUCTIONS

1DZB Instruction I

Integer type operation

m o o l o o
(00150)
(00050)

DZB O O ~ O O 2 m o o 1 0 2
(00050)
(00000)

Double-length integer type operation

E MLOOlOO
(200000)
(050000)

DZB 100000 2ML00102
(100000)
(000000)

+- Outside dead zone
+- Within dead zone

Real number type operation

+- Outside dead zone
t Within dead zone

Ik- DF00200
(150,O)
(50.0)

DZB 100.0
- Outside dead zone
- Within dead zone

I LIMIT Instruction I

4.1 1.3 LIMIT Instruction

Format] [Lower Limit] [Upper Limit]

El . '

.--.--- Lower limit :A

~ i ~ i 4.9 Operation of the UMIT lnshction

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

-
Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register
subscript
Any real number type register
Any real number type register with subscript
Subscript register
Constant -

;

'
8

'1: Will not be stored if the operation starts with a k .Win be stored if the operation does not start with a k .
'2: Will not be stored if the operation starts with a It. Will be stored if the operation does not start with a Ik .

peseription] The LIMIT instruction executes an uppernower limit operation on integer, double-le
integer, or real number type data. The following operation is performed:
, (a)Y=A (X<A)

(b)Y=X (A S X I B)
' (c)Y=B (B<X)

Where Xis the inuut value. A is the lower limit, B is the upper limit, and Y is the or

.
Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with
subscript
Any real number type register
Any real number type register with subscript
Subscript register .
Constant . -

[Example(s)] . Integer type operation

MWOOlOO
L r n T -00100 00100 =3 MWoo102

1 Double-length integer type operation

I

1 CMUKIlOO
' LIMIT -100000 100000

Input (MW00100)
-100~MW00100
-1OOSMWOO100~ 100
MW00100>100

Output (MW0010)
-00100 (under the lower limit)
Value of MW00100 , n b t h e v p p r and l o w lunnlal

00100 (above the upper limii)

I
input ~ 0 1 0 0)

-1OOOOO~MU)O1OO
.100000SWL00100~ 100000
Ml~0100~100000

Ourput (MLLl0102)
-100000 (under the lower limit)
Value ofML00100 (w d m lhcuppr and l o n r l u n w

1OOOOO (above the upper limit)

4. BASIC INSTRUCTIONS

I LIMIT Instruction I
Real number type operation

Ik- MFOOZOO
LIMIT -100.0 100.0 a MF00202

Input (MF00200)
-100.O>DF00100
~100.OSDEQ0100S 100.0
DF00100>100.0

Output (MF00202)
-100.0 (under the lower limit)
Value ofMF00200 (aithio the upp. d ~ m u l i m i r s)

100.0 (above the upper limit)

-1 . .
4.11.4 PI Instruction

Format] [Head ~ d d r e s s of Parameter Table]
Register address (except for # and C registers)
Register address with subscript (except for #.and C registers) 1

pescription] The PI instruction executes a PI operation in accordance with the contents of
parameter table that is set in advance. The input (X) to the PI operation must be ;
integer type or real number type value. The configuration of the parameter table w
differ according to whether the parameters are of a n integer type or of a real numb
type. ~ouble- length integer t h e parameters cannot be uLed (operations will 1
performed with each parameter being handled a s a n integer consisting of the lower
bits).
Table 4.17 Table of Integer Type PI Instruction Parameters

ADR I Type I Symbol I Name I Specification 1 UO

0
1
2

3

, - A ,
7 I W I L L I Lower PI limit I Lower limit for the P+I correction value IIN

[8 (W I DB I PI output dead band 1 width of the dead band for the P+I corre&in value IIN

W
W
W
W

IN
IN
IN

- - . .

1 9 l W l Y I PI output IPI correction output (also output to the A register) /OUT
10 I W I Yi I I correction value I Storage of the I correction value /OUT
11 I W I IREM 1 I remainder I Storage of the I remainder /OUT

RLY
Kp
Ki
Ti

4

5

*I: Relay 110 Bit Assignment

1 Specification I VO
I "ON" is input when integration is reset I IN

IUL
ILL

W
W

6 W U L

t l t o 7 ' 1 - I (Reserve) I Reserve relay for input
. . .

8 to F (- I (Reserve) I Reserve relay for output 1 OUT

RelayUO '

P gain
Integration adjustment gain
Internation time

Table 4.18 Table of Real Type PI lnstruction Parameters

Upper integration limit
Lower integration limit
Umer PI limit

*1: Relay UO Bit Assignment
BIT I Symbol I Name 1 Specfiation I UO
0 I IRST 1 Integration reset I " O N is input when integration is reset. I IN

Relay input, relay output "
Gain of the P correction (a gain of 1 is set to 100)
Gain of the integration circuit input (a gain of 1 is set to 100)

Intemation time (ms)
Upper limit for the I correction value
Lower limit for the I correction value
U ~ n e r limit for the P+I forrection value

1 to 7 1 - ((Reserve) I Reserve relay for input 1 IN
8 to F I - I(Reserve) I Reserve relay for output 1 OUT

INIOU
IN
IN
IN

4. BASIC INSTRUCTIONS

pTzziq
Here, the PI operation is expressed as follows:

X: deviation input value
Y: output value

The following operation is performed within the PI instruction:

Yi' : previous I output value Ts : scan time set value

1-1

When the P+I correction value reaches the upper or lower pi limit (UL, LL) or the PI dead band (DB)
When the present P correction value and the I correctionvalue are the same in sign (diverging), the I
mrtectionvalue is not renewed but is kept a t the previous value. Oppositely, if the P and I correction
values are opposite in sign (converging towards O), the I correction value is renewed by the present
value.

When the integration reset (IRST) is 'ON'
Yi = 0 and IREM = 0 are output

Input
Q

+
1

I LIMIT i+-

[Operation of the Register]

A I F I B I I) J O:storedX:notstored

+ I) * z 10 1 : indeterminate
O I O 1 (Stored or not stored depending on the or)

Ki
+

% * d b

'1: Will not be stored if the operation starts with a I- .Will be stored if the operation does not start with a k .
'2: Will not be stored if the operation starts with a IF . Will be stored if the operation does not start with a Ik.

[Example(s)] Integer type operation
M W O O l O O to MWOOlll are used for the parameter table.

1- MWOOOlO C Deviation input value

PI MAOOlOO ~MWOOO11
R

I
Head address of PI output value
parameter table

Real number type operation
MF00200 to MF00220 are used for the parameter table.

MF002OO t Deviation input value
PI MA00200 2 MF00022

I p .?

Head address of PI output value
parameter table

(PD Instruction I
4.1 1.5 PD lnstruction

Format] [Head Address of Parameter Table]

Register address (except for # and C registers)
Register address with subscript (except for # and C registers) 1

[Description] The PD instruction executes a PD operation in accordance with the contents of
parameter table that is set in advance. The input (X) to the PD operation must be r
integer type or real number type value. The configuration of the parameter table w
differ according to whether the parameters are of an integer type or of a real numb
type. Double-length integer type parameters cannot be used (operations will 1
performed with each parameter being handled as a n integer consisting of the lower
bits).

Table 4.19 Table of Integer Type PD lnstruction Parameters

ADR lType I Symbol 1 Name Specification I UO
0
1

2

3
4

5
fi

7

Table 4.20 Table of Real Type PD Instruction Parameters

W
W
w
W
W
W
W

I
*l: Relay U0 Bit Assignment

-.
I ADR IType 1 Symbol 1 Name 1 Specification I UO

W
8 W Y

9 W X

0 I W I RLY I Relay 110 I Relay input, relay output *' I INIOUT

I 1 W 1 - 1 (Reserve) I Reserve register -
- -

RLY

Kp
Kd
Tdl
Td2
UL
LL

UO

IN
OUT

1 2 1 F I KD IPsain I Gain of the P correction

--

DB

Specification

Reserve relay for input

Reserve relay for output

'1: Relav UO Bit Assienment

RelayUO
P gain a .

D gain
Divergence differentiation time

Convergence differendtion time

Upper PD limit
Lower PD limit

Name

(Reserve)
(Reserve)

BIT

Oto7
8 t o F

-

PD output dead band

PD output
Input value storage

Symbol
-
-

Relay input, relay output '1
Gain of the P correction (a gain of 1 is set to 100)
Gain of the dinerentiation eirmit input (a gain of 1 is set to 100)

The dinerentiation time (ins) used in the case of diverging input.

The differentiation time (ms) used in the case of mnvewing input.

Upper limit for the P+D correction value
Lower limit for the P+D correction value

'

- ~~. -

INIOU
IN
IN
IN
IN
IN
IN

Width of the dead band for the P+D correction value
PD correction output (also output to the A register)

Storage of the present deviation input value

IN

OUT

OUT

UO

IN

OUT

Specification
. .

Reserve relay for input
Reserve relay for output

Name

(Reserve)
(Reserve)

BIT

Oto7
8 t o F

Symbol
-
-

4. BASIC INSTRUCTIONS

I PD Instruction I
Here, the PD operation is expressed as,follows:

Y = K ~ + K ~ x T ~ x s
X

X: deviation input value Y: output value

The following operation is performed within the PD instruction:

Td Y=KpXX+KdX(X-X') X-
Ts

Xi' : previous input value Ts : scan time set value

Block Diagram

When thn change in deviation output (X-X) and the previous deviation input (X') are the same in sign
(diverging) in the diftwentiation (D) operation

The divergence differentiation time CI'dl) is used as the dflerentiation time.
When the change in deviation output (X-X') and the previous deviation input (X') are opposite in sign
(converging) in the differentiation (D) operation

The convergence differentiation time Pd2) is used as the differentiation time.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

'1: Will not be stored if the operation starts with a k . Will be stored if the operation does not start with a t .
'2: Will not be stored if the operation starts with a I t . Will be stored if the operation does not start with a I t .

. . ..
~ ~ r) ~ l d d t o ~ ~ 0 0 1 0 9 are used for the parameter table.

1- MWOOOlO +Deviation input value I PDMAOOlOO ~MWOOOll
- -

I I
Head address of PD output value
parameter table

Real number type operation
MF00200 to MF00218 are used for the parameter table.

IF MF00200 +-Deviation input value I PDMAOOZOO a MF00022 I
I I

Head address of PD output value
parameter table

4-89

I PID Instruction 1

Format] [Head Address of Parameter Table]

Register addrkss (except for # and C registers)
Register address with subscript (except for # and C registers) I

[Description] The PID instruction executes a PID operation in accordance with the content
parameter table that is set in advance. The input (X) to the PID operation must

s of
be s

integer type or real number type value. The ckliguration of the parameter table w
differ according to whether the parameters are of an integer type or of a real numb,
type. Double-length integer type parameters cannot be used (operations will 1
performed with each parameter being handled as an integer consisting of the lower I
bits).

 able 4.21 Table of Integer Type PID lnst~ction Parameters

ADR IType I Symbol I Name I Specification I UO
0 [w [RLY I &lay uo [Relay input, relay output*' JINIOW

. . .

6 1 W I Td2 I Convergence differentiation time I The differentiation time (ms) used in the ease of converging input. IIN
7 1 W I IUL I Uooer inteeration limit IUooer limit for the I correction value 1 IN

1
2

3
4

5

1 8 1 W I ILL I Lbwer integration limit lLower limit for the I correction value IIN

W
W
W
W
W

9 -

10
11

Kp
Ki
Kd
Ti
Tdl

W
W
W

12

13
14 -

Pgain
I gain . -
D gain
Integration time
~ivergen& differentiation time

Y
Yi
IREM

W

W
W

1 5 1 W l X I Input value storage I Storage of the present deviation input value

UL
LL
DB '

OUT

Gain of the P correction (a gain of 1 is set to 100)

Gain of the integration circuit input (a of 1 is set to 100)

Gain of the differentiation circuit input (a gain of 1 is set to 100)

Integration time (ms)
The differentiation time (ma) used in the case of divergjna input.

PID output
I correction value
I remainder

IN
IN
IN
IN
IN

UpperPID limit
Lower PID limit

PID o u t ~ u t dead band

*1: Relay UO Bit Assignment

PID correction output (also output to the A register)
Storage of the I correction value

Storage of the I remainder

BIT

0
1 to 7
8 toF

Upper limit for the P+I+D correction value
Lower limit for the P+I+D correction value

Width of the dead band for the P+I+D eorreetion value
OUT
OUT
OUT

IN
IN
IN

Symbol

IRST
-
-

Name

Integration reset

(Reserve)
(Reserve)

Specification

"ON" is input when integration is reset.

Reserve relay for input
Reserve relay for output

UO

IN
IN
OUT

4. BASIC INSTRUCTIONS

[PID Instruction I
'. - t

Table 4.22 Table of Real Type PID Instruction Parameters

*1: Relay UO Bit Assignment
BIT 1 Symbol 1 Name 1 Specification ' 1 UO

0 I IRST I Integration reset I "ON" is input when integration is reset. I IN

I Here, the PID operation is expressed as follows:

1 to 7

X: deviation input value
Y: output value

- I (Reserve) I Reserve relay for input I IN

The following operation is performed within the PID instruction:

8 to F I - I (Reserve) I Reserve relay for output I OUT

X' : previous input value
Yi' : previous I output value
Ts : scan time set value

I PID Instruction I
Block Diagram I

. .

'

. LIYIT.DB

Input
I. -

I LIYIT

. .
. .

When the P+l+D correction value reaches the upper or lower PID limit (UL, U) or tha PID dead band (DB)
When the present P correction value and the I mrrection value are tbe same in sign (divereg), the I
correction vaue is not renewed but is kept at the previous value. Oppositely, if the P and I correction
values are opposite in sign (converging towards 0). the I eorreztion value is renewed with the present
value.

When the change indeviatioioutput (X-X') and the previous deviation input (X') are the same in sign
(diverging) in.the differentiation (D) operation

The divergenee Merentiation.time (Tdl) is used as the differentiation time.

When the change in deviati~n output (X-X') and the previo& deviation input (X') are Opposite in sign
(conmging) in the differentiation (D) operation

The convergence Merentiatio; time (Td2) is used k the Merentiation time.

When the integration reset (IRSI) is 'ON'
YI = 0 and IREM = 0 are output.

[Operation of the Register]
I B 1 1 I J 0: stored X i not stored

* : indeterminate * 1 1 ' 2 1 0 1 0 1 0 (Stored or not stored depending on the case.)
'1: Will not be stored if the owration starts with a I-. Will be stared if the operation does not start with a t .
*2: Will not be stared if the operation starts with a k. Will be stared if the operation does not start with a It .
I

[Example(s)] Integer type operation
MWOOlOO to MW00115 are used for the parameter table.

I t- MWOOO~O t Deviation input value

PID MA00100 = MWOOOll I
I

Head address of
parameter table

I
PW output value

Real number type operation
MF00200 to MF00228 are used for the parameter table.

ItMF00200 +Deviation input value

PID MA00200 3 MF00022
I I
I

Head address of
parameter table

4. BASIC INSTRUCTIONS

I LAG Instruction (

11.7 LAG lnstruction

Format] [Head Address of Parameter Table]
address (except for # and C registers)

Register address with subscript (except for # and C registers) I
[Description] The LAG instruction computes the fist-order lag in accordance with the contents of a

parameter table that is set in advance. The input (X) to the LAG operation must be an
integer type or real number type value. The configuration of the parameter table will
diier according to whether the parameters are of an integer type or of a real number
type. Double-length integer type parameters cannot be used (operations will be performed
with each parameter being handled as an integer consisting of the lower 16 bits).

Table 4.23 Table of Integer Type LAG Instruction Parameters
ADR IType I Symbol 1 Name I Specification I UO

0 I W I RLY I Relav UO I Relav innut. rnlnv n ~ l t n r ~ t *S' I T N I ~ T

3

* 1: Relav UO Bit Assienment

'1: Relay UO Bit Assignment

1 W T
2 W Y

W

BIT

0
l t o 7
8 to F

Here, the LAG operation is expressed as follows:

Y - - 1 x - l + ~ x ~ ; i e T X(dY/dt)+Y=X

-

The following oueration is uerformed within the LAG instruction with dt=Ts and dY=Y-Y

REM

Symbol

IRST
-
-

BIT

0

1 to 7
8 to F

X : input value
Y : output value
Y? previous output value
Ts : scan time set value

Table 424 Table of Real Type LAG lnstruction Parameters

Y=O and REM=O are output when the LAG reset (RST) is "ON"

First-order lag time constant

LAG output
Remainder

Name
LAG reset
(Reserve)
(Reserve)

ADR

0

Symbol
IRST
-
-

First-order lag time constant (ms)
LAG output (also output to the A register)
Storage of remainder

S ~ e c ~ c a t i o n

"ON" is input when LAG is reset.
Reserve relay for input
Reserve relay for output

Type
W

1 W -
2 F T
4 F Y

Name

LAG reset

(Reserve)
(Reserve)

IN
OUT
OUT

UO
IN
IN
OUT

Symbol

RLY

Specification

"ON" is input when LAG is reset.
Reserve relay for input
Reserve relay for output

UO

IN

IN
OUT

Name

Relay UO
(Reserve)

First-order lag time anstant

LAG output

Specification
Relay input, relay output *'
Reserve register

First-order lag time constant (s)
LAG output (also output to the F register)

UO
IN/OUT
-
IN
OUT

I LAG Instruction 1 -~

LLAG Instruction

[Operation of the Register]
A 1 F I B I I I J

0 : s to red X:notstored
* : indeterminate

," 1 *' 1 O I - I (Stored or not stored depending on the case.)
*I: Will not be stowd if the operation starts with a)-. Will be stored if the operation does not start with a t- .
*z: Will not be storedif the operation starts with a I t . Will be s&d if the operationdoes not start witha I-.

[Example(s)J Integer type operation
MWOOlOO to MW00103 are used for the parameter table.

~ ~ O o o l o +Input value

LAG MA00100 3MWOOOll
. .

Head addreis of parameter table LAG outpit value

Real number type operation
MF00200 to MF00204 are used for the parameter table.

1

IEMF00200 -butvalue
LAG- MA00200 3 MF00022

I ~ ~

I
Head address of parameter table LAG output value

4.1 1.8 LLAG Instruction

Format] [Head Address of Parameter Table]

Register address (except for # and C registers)
Register address with subscript (except for # and C registers) I

pescription] The LLAG instruction computes the phase leadnag in accordance with the contents
parameter table that is set in advance. The input (X) to the LLAG operation must bf
integer type or real number type value. The configuration of the parameter table
differ according to whether the parameters are of an integer type or of a real num
type. Double-length integer type parameters cannot be used (operations will be perfon
with each parameter being handled as an integer consistmg of the lower 16 bits).

Table 4.25 Table of Integer Typ6 LLAG Instruction Parameters

*1: Relav UO Bit Assignment

- -- . I

8 t o F

Specification

"ON" is input when LLAG is reset.
Reserve relav for i n ~ u t

Name :
LLAG reset
(Reserve)

BIT

0
1 tn 7

- I (Reserve) I Reserve relay for output IOUT I

I10

IN
IN

Symbol

IRST
-

4. BASIC INSTRUCTIONS

I LLAG Instruction]

Table 4.26 Table of Real Type LLAG Instruction Parameters

The following operation is performed within the LAG instruction with dt=Ts, dY=Y-Y', and dX=X-X':

Y = T l XY'+(T2+Ts) X X - T 2 XX1+REM
T1+ Ts

1: Relay UO Bit Assignment

X : input value
Y : output value
X' : previous input value
Y' : previous output value
Ts : scan time set value

BIT

0
1 to 7

8 t o F

Y=O, REM=O, and X=O are output when the LLAG reset (RST) is "ON."

[Operation of the Register]

-1 0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

'1: Will not be stored if the operation starts with a F. Will be stored if the operation does not start with a .
'2: Will not be stored if the operation starts with a it. Will be stored if the operation does not start with a U- .

Here, the LLAG operation is expressed as follows:

Symbol

IRST
-
-

[Example(s)] Integer type operation
MWOOlOO to MW00105 are used for the parameter table.

I
Head address of parameter table LLAG outLut value

Name

LLAG reset
(Reserve)
(Reserve)

Real number type operation
MF00200 to MF00208 are used for the ~arameter table.

t- MF00200 value
LLAG MA00200 aMF00022

'E
I

Head address of parameter table LLAG output value

Specification
"ON" is input when LLAG is reset.
Reserve relay for input
Reserve relay for output

UO
IN
IN
OUT

I FGN lnstmction I
4.1 1.9 FGN Instruction

. .

Format] [Head Address of Parameter Table]

FGN Register addiess r Register address with subscript 1
L

@lescription] The FGN instruction generates a function curve in accordance with the contents o
parameter table that is set in advance. Although the inputs to the FGN instructi
can be integer type, double-length integer type, or real number type values, t
con6guration of the parameter table will differ according to the type of values.
Table 4.27 Table of lnteger Type FGN lnst~ction Parameters

ADR I Type I Symbol 1 Name

O W
1 W
2 W

3 W
4 W

i r s of X and Y I IN

Specification I UO

2N-1
2N

N
X1
Y1
X2
Y2

Table 4.28 Table of Double-length lnteger or Real Type FGN Instruction Parameters
ADR I Type 1 Symbol (Name Specficatlon I UO

W
W

2

If the data set in the parameter table for the.FGN instruction are Xn and Y,,, the datr
must be set so that Xn 5 Xn+,. The FGN instruction searches for an XnNn pair witk
the parameter table for which Xn5 X 5 Xn+, a i d comp&es the output value Y accordiw
'to the following formula:

Number of data
Data 1
Data 1

Data 2
Data2

4N-2
4N

The relationship between the data set in parameter table and the input value X an(
output value Y will be as shown in Fig. 4.10:

XN
YN

O W
1 W -

LJF

Fig. 4.10 Relationship between Input and Output Values

Number of pairs of X and Y

LIF
LJF

IN
IN
IN
IN
IN

Data N

Data N

N

X1

IN
IN

XN'
YN

Number of data
(Reserve)
Data1

Number of pa
Reserve register (IN

1 IN

Data N
DataN

IN
IN

4. BASIC INSTRUCTIONS

I FGN Instruction I
If an XnNn pair, which satisfies Xn S X 5 Xn+, for an input value X, does not exist in the parameter
table, the result will be as follows:

NOTE
An operation error may occur if the parameters are not set correctly.
A division error will occur if the number of data (number of XIY pairs) is 0.
When using the FGN instruction for a double-length integer type operation, be sure to execute
" k double-length integer type register" immediately before the FGN instruction.

[Operation of the Register]

-1 0 : stored X : not stored
: indeterminate

(Stored or not stored depending on the case.)
-1: Will not be stored if the operation starts with a k . Will be stored if the operation does not start with a t .
%:Will not be stored if the operation starts with a k. Will be stored if the operation does not start with a It.

I)] Integer type operation (number of data: N=20)
#WOO000 to #WOO040 are used for the parameter table.

I
Head address of parameter table outpit value

Double-length integer type operation (number of data: N=20)
#MOO00 to #LO0080 are used for the parameter table.

I FGN #A00000 2MLOgl02 I
I

Head address of parameter table Output value

Real number type operation (number of data: N=20)
#F00000 to #F00080 are used for the parameter table.

ItMF00020 -"put
FGN #A00000 3 MF00022

I I
Head a~dress of parameter table Output value

NOTE
The following form of usage is not allowed.

FMLOOOOO + 10 * ML00002
FGN MA00100 * MM0004

t MLOOOOO
"Comment"
FGN MAOOlOO

(IFGN Instruction I
4.11.10 IFGN Instruction

8

Format] [Head Address of Parameter Table]

I Register address
Register address with subscript

[Description] The IFGN instruction generates a function curve in accordance with the contents of
p'arameter table that is set in advance. Although the inputs to the IFGN instructio
can be integer type, double-length integer type, or real number type values, th
~ o ~ g u r a t i o n of the parameter table will differ according to the type of values. 'R
parameter tables are the same as those for the FGN instruction.
Refer to the table 4.27 and the table 4.28.

. . :

If the data set in the parameter table for the IFGN instruction are X,, and Yn, the dai
niust be set so that Y,, S Ye,. The IFGN instruction searches for an XnNn pair withi
the parameter table for which Yn 5 Y 5 Yn+, for an input value Y and computes tt
output value X according to the following formula:

The relationship between the data set in parameter data and the input value Y an

- . -
. .

/ , I , I

: Fig. 4.11 Relationship between Input and Output Values . .

IS an X,Nn pair, which satisfies Yn S Y 5 Yn+, for an input value Y, does not exist in
the parameter table, the result will be as follows:

OI fY<Y, : x=x,+ q-g (Y-Y,)
y*-Yl

NOTE
An operation error may occur if the parameters are not set correctly.
A division error will occur if the number of data (number of XN pairs) is 0.
When using the IFGN instruction for a double-length integer type operation, be
sure to execute " I- double-length integer type register" immediately before the
IFGN instruction.

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

f 1: Will not be stored if the operation starts with a t . Will be stored if the operation does not start with a t .
*2: Will not be stored if the operation starts with a It. Will be stored if the operation does not start mth a I- .

4. BASIC INSTRUCTIONS

(IFGN Instruction I
[Example(s)] Integer type operation (number of data: N=20) .

#WOO000 to #WOO040 are used for the parameter table.

/- MWOOO~O +-Input value

IFGN #A00000 a MwOOOll
I I
I

Head address of parameter table Output value

Double-length integer type operation (number of data: N=20)
#LO0000 to #LO0080 are used for the parameter table.

/- ML00100 - b u t value
IFGN #A00000 3ML00102

I I
Head, address of parameter table Output value

Real number type operation (number of data: N=20)
#F00000 to #F00080 areused for the parameter table.

I C MF00200 -Input value

I
Head address of parameter table outpit value

NOTE
The following form of usage is not allowed.

t--MMOOOO + 10 a MM0002
IFGN MA00100 - ML00004

MLOOOOO
"Comment"
IFGN MA00100 3 MM0006

r LAU Instruction I
4.11.11 LAU Instruction

Format] [Head Address of Parameter Table]

Register address (except for # and C registers)
Register address with subscript (except for # and C registers) I

pescription] The LAU instruction is used to perform acceleration and deceleration at a frx
accelerationldeceleration rate upon input of a speed reference (value of the A registe
The operation is carried out in accordance with the contents of a parameter table tb
is set in advance. The input (X) to the LAU operation must be an integer type or re
number type value. The codiguration of the parameter table will differ according
whether the parameters are of a n integer type or of a real number type. Doubl
length integer type parameters cannot be used (operations will be performed wi
each parameter being handled as an integer consisting of the lower 16 bits).

Table 429 Table of Integer Type LAU Instruction Parameters

UO
INIOL
IN

/deceleration speed (DVDT) (-32768 - 32767)

10 1 L I REM I Remainder I Remainder of the accelerationldeceleration rate 1 OUT

Specification

Relay input, relay output *'
Scale of the 100% input

2
3
4

6

7

8
9

'1: Relay YO Bit Assignment

ADR

0
1

AT
BT

QT

DVDT

W
W
W

5 W V

W

Symbol

RLY

LV

Type
W
W

W
W

Name

Relay UO
100% input level
Acceleration time
Deceleration time

Quickstop time
Current speed
Current acceleration

/deceleration speed

BIT -
0
1

2
3

4 to 7

W -
VIM

DVDTK

- ~~

8 -
9

A
B

C to F

Time for acceleration from 0% to 100% (0.1s)
Time for deceleration from 100% to 0% (0.1s)
Time for quick stop &om 100% to 0% (0.1s)
LAU output (also output to the A register)
Scaled with the normal acceleration rate being set to 5000.

Symbol
RN

QS
DVDTF
DVDTS
-

IN
IN
IN
OUT
OUT

(Reserve)
Previous speed reference
Remainder

*1: When the quick stop (QS) is "OFF", the quick stop time is used for the acceleration/deceleration time.

ARY
BRY
LSP

EQU
-

Name

Line is running

Quick stop
DVDT Operation not executed
DVDT Operation selection

(Reserve)

Reserve register
For storage of the previous value of the speed reference input

Scaling coefficient of the current acceleration

In acceleration
In deceleration
Zero speed
Coincidence
(Reserve)

OUT
OUT

Specification

"ON" is input while the line is running.

"OFF is input upon quick stop. *'
"ON" is input at non-execution of DVDT operation.
Selection DVDT operation type
Reserve relav for i n ~ u t

UO
IN
IN
IN

IN
IN

"ON" is output during acceleration.
"ON" is output during deceleration.
"ON" is output a t a speed of 0.
"ON" is output when input value = output value.
Reserve relay for output

OUT
OUT
OUT
OUT
OUT

4. BASIC INSTRUCTIONS

I M U Instruction I
Table 4.30 Table of Real Number Type LAU Instruction Parameters

I*1: Relay UO Bit Assignment .

The following operations are performed inside the LAU instruction:

Integer Type LAU lnstruction

Acceleration rate (ADV) = LV X Ts (0.lms) + REM WhenVI>V'V>O):
V = V' t ADV; In acceleration (ARY) ON

AT (0.1s) X 1000 WhenVI<V(V'SO):
V = V'-ADV; In ameleration (ARY) ON

When VI > V' (V'CO) : Deceleration rate (BDV) = LV X Ts (0.lms) + REM V = V' t BDV; In deceleration (BRY) ON
BT (0.1s) X 1000 WhenVI<V'OP>O):

V = V'-BDV; In deceleration (BRY) ON

Quick stop rate (QDV) = LV X Ts (0.lms) + REM When QS=ON (VI>V', WO) :

QT (0.1s) X 1000
V = V' t QDDV; In deceleration (BRY) ON

When QS=ON (VkV', V%) :
V = V'-QDV, In deceleration (BRY) ON

V orevious soeed outout value
Ts : scan time set value (ms)
VI: speed reference input

If the DVDT operation instruction (DVDTF') is ON, a current acceleratioddeceleration operation
(DVDT) is performed.

* If DVDTF is OFF, DVDT = 0 is output.
If DVDTF is ON, a current acceleratioddeceleration operation @WIT) is output after one of the
following operations has been performed through DVDT operation selection (DVDTS).

If DVDTS is ON: DVDT = - v-V' X 5000
ADV

If DVDTS is OFF: DVDT = (V X DVDTK) - (V' X DVDTJQ; DVDTK: DVDT coeff~cient.

At V = 0, the zero speed (LSP) is ON, at VI=V, coincidence (EQU) turns ON.
* When the "line is running" (RN) is "OFF," V=O, DVD'EO, and REM=O are output.

4-101

(LAU Instruction 1
Real Number Type LAU Instruction -.

LV X Ts (0.lms)
When VI > V (VW)

Acceleration rate (ADV) = V = V + ADV: "In acceleration" (ARY) is ON

AT($ X 10000 WhenVI<V'WO)
. . .. V = V - ADV: "In acceleration" (ARY) is ON

- . - LV X .Ts (0.1ms) W h e n V I c V W)
Deceleration rate (BDV) = V = V + BDV: "In deceleration" (BRY) is ON

BT(s) &, 10000 When VI > v (~'4)
V = V - BDV: "In deceleration" (BRY) is ON

. .

- LV X Ts (O.lms), When QS=ON (V> VI 2 0)
Quick stop rate (QDV) = * V = + QDV: "In deceleration" (BRY) is ON

I . QT(sj x 1OOOO When Q-N (V'e VI S 0)
V = V - QDV: "In deceleration" (BRY) is ON

V': previous speed output value
VI: speed reference input
Ts: scan time set value (ms)

.. .

The current accelerationldecheration speed (DVDT) is output after the following operation is car
out:

. .
DVDT8=V-V' . .

. .

When the "lihe is &g" (RN) is "OFF," V=O and DVDT=O are output.-
. .- ..

[Operationof the Register] ',

0: stored X : not stored
* : indeterGate
(Stored or not stored depending on the case.)

tl: Will be stored if the operation starts with a t . Will not be stored if the operation does not start with a t
-2: Will not be stored if the operation starts with a b . Wiu be stored if the operation does not start with a l-

[Example(s)] Integer type operation
. . Use MWOOlOO to MW00106 for the parameter table.

LAU MA00100 I ,
I

Head address of parameter table LAU output value

Real number type operation
-Use MF00200 to MF00212 for the parameter table.

MF00200 -but
LAU MA00200 aMF00022

'F
I

Head address of parameter table LAU output value

4. BASIC INSTRUCTIONS

[SLAU Instruction I
1.12 SLAU Instruction

[Format] [Head Address of Parameter Table]

SLAU Register address (except for # and C registers) [Register address with subscript (except for # and C registers) I'
[Description] The SLAU instruction is used to perform acceleration and deceleration a t variable

acceleration/deceleration rates upon input of a speed reference (value of the A register). The
operation is carried out in accordance with the contents of a parameter table that is set in
advance. For integer type SLAU instruction, a positive or a negative value for speed reference
input can be entered. For real number type SLAU instruction, only a positive value for
speed reference input can be entered. Do not use a negative value therefore. Set it so that
the linear acceleration and deceleration time (A T W 2 S-curve acceleration and deceleration
time (AATBBT). The input 0 to the SLAU operation must be an integer type or real number
type value. The configuration of the parameter table will differ according to whether the
parameters are of a n integer type o; of a real number type. Double-length integer type
parameters cannot be used (operations will be performed with each parameter being handled
a s a n integer consisting of thk lower 16 bits)..

-

Table 4.31 Table of Integer Type SLAU instruction Parameters

1 SLAU Instruction)

The following operations are performed inside the SLAU instruction:
. .

Integer Type SLAU Instruction

Acceleration rate (ADV) = (iV X ~ s (o . l m s) + ~ ~ ~ l) When VI > V' (IP 2 0) outside the S-curve
AT(0.k) X 1000 region (ADVS > ADV):

I V = V' + ADV: In acceleration (ARn ON . .
whenVI<V'(V'~d):

V = V-ADV; In acceleration (MY) ON

V X Ts O.lms +REMI) When VI > V' (IP< 0) outside the S - m e
Deceleration,rate (BDV) = BT(i.ls) X)looo region (BDVS < BDV):

V = V' + BDV: In deceleration (BRY) 01 . .
W ~ ~ ~ V I < V (C P > O)

V = V'-BDV; In deceleration (BRY) Oh

V X Ts(O.lms)+REMl) , m e n Q S ~ - N (VI > V', V<0) :
Quick stoppage rate (QDV) = (L

QT(O.ls) X 1000 V = V' + QDV; In dseleration PRY) ON
I .When QS=ON (VI < V', n o) :
I V.= V-QDV; In deceleration (BRY) ON

Mote) At auick stoo. the movement is not ~- ,
cuke but l&ar (same as during IJ
quick stop).

Acceleration rate in the S-curve region (ADVS) = ADVS' + AADVS

ADV X Ts(O.lms)+REM2
AADvS= ~. . AAT(0.0ls) X 100

When VI > V' (IP 2 0) inside the S-curve
region (ADVS < ADV):

V =V' + ADVS; In acceleration (ARY) Oh
WhenVI<V'(V'SO):

V = V' -ADVS; lo acceleration (ARY) ON

4. BASIC INSTRUCTIONS

I SLAU Instmction 1
Deceleration rate in the S-curve region (BDVS) = BDVS' f BBDVS

BDV X Ts(O.lms)+REM2 When VI > V' (V'< 0) inside the S a m e
BBDVS =

BBT(O.Ols) X 100
region (BDVS < BDV):

V = V' + BDVS; In deceleration (BRn ON
When VI < V' 0130):

V = V'-BDVS; In deceleration (BRY) ON V' : previous speed output value
Ts : scan time set value (ms)
VI. speed reference input

* If the DVDT operation instruction (DVDTF) is ON, a current acceleratioddeceleration speed
operation 1 (DVDTl) is performed.

* If DVDTF is OFF, DVDTl = 0 is output.
IF DVDTF is ON, a current acceleratioddeceleration speed operation 1 (DVDT1) is output
after one of the following operations has been performed through DVDTl operation selection
(DVDTS).

If DVDTS is ON: DVDTl = v-V' X 5000

If DVDTS is OFF: (V X DVDTK) - (V' x DVDTK); DVDTK: DVDT coefficient.

* The current acceleratioddeceleration speed 2 o T 2) is output a s follows:
During acceleration inside the S-curve region : DVDT2 = f ADVS
During acceleration outside the S-curve region : DVDT2 = f ADV
During deceleration inside the S-curve region : DVDT2 = f BDVS
During deceleration outside the S-curve region : DVDT2 = f BDV

* The speed increase upon holding (ABMD) is output after the following operation is performed.

DVDT2' = Current acceleratioddeceleration speed 2 (DVDT2) previous value

* At V = 0, the zem speed (LSP) is ON, a t VI=V, coincidence (EQU) turns ON.
* When the line running signal (RN) is 'OFF," V=O, DVDTl=O, DVDT2=O, DVDTS=O, ABMD=O,

REMl=O, REM2=O, and REM3=O are output.

Real Number Type SLAU Instruction

LV X Ts (0.11~s) When VI > V' (V'> 0) outside the S-curve region
Acceleration rate (ADV) = AT(s) 10000 (ADVS > ADV): V = V' + ADV

- LV x Ts (O.lms) When VI < V' W> 0) outside the S-curve region
Deceleration rate (BDV) = BT(s) 10000 (BDVS < BDV): V = V' + BDV

- LV X Ts (0.lms) When QS=ON (V'> VI) :
Quick stop rate (QDV) = QT(s) X 10000 V=V'+QDV

Acceleration rate in the S-curve region (ADVS) = ADVS' + AADVS:
where ADVS' = ADVS previous value

ADV X Ts (0.lms)
AADvS = AAT(s) X 10000

When VI > V' (V'> 0) inside the S-curve region
(ADVS < ADV): V = V' + ADVS

Deceleration rate in the S-curve region (BDVS) = BDVS' + BBDVS:
where BDVS = BDVS previous value

BDV X Ts (0.lms)
BBDVS = BBT(s) X 10000

V' : previous speed output value
VI : speed reference input
Ts : scan time set value (ms)

When VI < V' (V'> 0) inside the S-curve region
(BDVS > BDV): V = V' + BDVS

I SLAU Instruction I
The current acceleration/deceleration speed (DVDT) is output after the following operation is can
out:

During acceleration inside S-curve region : DVDT = ADVS
During acceleration outside S-curve region : DVDT = ADV
During deceleration inside S-curve region : DVDT = BDVS
During deceleration outside S-curve region : DVDT = BDV

The speed increase upon holding (ABMD) is output after the following operation is performed.

DVDT X DVDT
ABMD = 2 X AADVS(BBDVS)

When the "line is running" signal (RN) is "OFF*', V=O, D V D M , and ABMD=O are output.

[Operation of the Register]
A I F I B I I I J O:storedX:,nots tored

: indeterminate I *' I *' 1 O I O I O / (Stored or not stored depending on the ease.)
*1: Will be stored if the operation starts with a t . Will not be stored if the operation does not start with a t .
'2: Will not be stared 2the operation starts with a lk. Will be stared if the operation does not start with a k . . .

%

[Example(s)] 1nteger type operation
Use MWOOlOO to MWOOlll for the ~ a r a m e t i r table.

k MW00010 .-Input value
SLAU MA00100 *MWOOOll

3

I I

: Head address of parameter table SLAU output value

Real number type operation
MF00200 to MF00218 are used for the parameter table.

I I

Head address of parameter table SLAU output value

Y1
(lm)

At deceleration

0'

4 . Acceleration
+ . + Accelerat~on Deeeleratlon

I . Deceleration
. starts completed starts completed

Fig. 4.12 Motion by SLAU

.11.13 PWM lnstruction

4. BASIC INSTRUCTIONS

I PWM Instruction]

Format] [Head Address of Parameter Table]

Register address (except for # and C registers)
Register address with subscript (except for # and C registers)

parameter table.

I
[Description] The PWM instruction converts the value of the A register to PWM as input value

(-100.00 to 100.00%, units: 0.01%), and the result is output to the B register and the

Double-length type integer operations and real number type operations are not allowed.
Time of ON output and number of ON outputs are expressed as follows.

T& of ON output = PWMT(X+~OOOO)
2nonn -....

Number of ON outputs = PWMT(X+10000)

Ts X 20000

X: input value

Ts: scan time set value (ms)
When 100.00% is input: all ON
When 0% is input: 50% duty (50% ON)
When -100.00% is input: all OFF I

When the PWM reset (PWMRST) is "ON", all internal operations are reset. PWM op-
erations are performed with that instant as the starting point. After powering up, first
turn "ON" PWMRST and clear internal operations. Then use the PWM instruction.

Table 4.33 Table of PWM Instruction Parameters

*1: Relay 110 Bit Assignment

[Example@)] MWOOlOO is used as PWM input and MW00200 to MW00207 as a parameter table.

BIT
0

2 t o 7
8

9 to F

PWM reset with the
first scan of DWG.L

MWOOlOO +-P,WM Input value
(SB000001 when

PWM MA00200
used with DWG.H)

Head address of pantmeter table

Symbol
PWMRST
-

PWMOUT
-

Name
PWM reset
(Reserve)
PWM output
(Resenre)

Specification
" O N is input when PWM is reset
Reserve relay for input
PWM is output (two-value output: ON=l, OFF=O)
Reserve relay for output

UO
IN
IN
OUT
OUT

I Block Read Instruction (TBLBR) I

4.12 Table Data Operation Instructions
When an error occurs a t the execution of table data operation instruction, a n error code is set to
register and B register is turned ON. For the error codes, refer to Table 4.34.

. Table 4.34 List of Errors

-
. , I the range of the target table.

0003H I Outside column number range I The column numbers of the table element are r

Error code
OOOlH
0002H

- I in the range of the target table.
0004H I Wring number of elements I The number of target elements is not correct
0005H (Insacient space in storage destination (Area for storing is not adequate.
0006H I Wrong element format) The format of the specified element is wrong.

Error name
Reference table not defined
Outside row number range

0007H Cue buffer error
-- I

Contents
The target table has not been defined.
The row numbers of the table element are not

An attempt is made to read the cue buffer when
is empty, or the buffer is written to by point

4.12.1 Block Read Instruction (TBLBR) . .

OOOSH
0009H

Format] mead Address of Transfer Destination Data] [~ead Address of Parameter Ts
Register address (except for # and Register address

Register address with
Register address with subscript subxzipt
(except for # and C registers)

[Description] The block read instruction consecutively ;cads, in block format, elements of the file regist
table specified by table name, row number, and column number. The instruction then stor
the elements in a consecutive region beginning with the specified register. The type of tl
elements read is automatically. judged based on the table specified. The format of the regist
stored at is ignored. The read value is stored according to the table element format witho

Cue table error
System error

format conversion.
In referencing a table, if there is anything invalid in the name;row number, column number,
or insuflicient data length storage, an error is reported, and the data is not read. The contents
ofthe reeister for storaw are kent.

advance when i t is full.
The designated table is not a cue type table.
An unexpected error is detected internally in t
system during instruction execution.

- - ~-~~ ~ ~ u - ~.
Upon normal completion, the number of words transmitted is set in the A register, the B register
turns OFF. When an error occurs. an error code is set in A rezister. and B reeister turns ON. -
For error codes, refer to Table 4.34.

-

. . : Table 4.35 Table of Block Read Instruction Parameters

[Operation of the Register]

. A 1 F I B I I I J 0: stored X : notstored . .
* : indeterminate * (stored or n o ~ stoied depen&g on the case.)

[Example(s)] From the table defined as TABLE 1, using DWOOOlO to DW00013 as a parametel
table, data (element type is integer type) from the starting table element position t c
the end position are stored in block form in the area starting from MW00100.

TBLBR TABLEI, MA00100, DAOOOlO r =2 MWOooll

4. BASIC INSTRUCTIONS

I Block Write Instruction (TBLBW)~

I 12.2 Block Write Instmction (TBLBW) : ,;'
Format] mead Address of [Head Address of

Transfer Destination Data] Parameter Table]
ransfer source table

TBLBW Kame
Register address (except Register address
for # and C registers) Register address with
Register address with subscript
subscript (except for # and
C registers)

I
pescription] The block write instruction consecutively stores a consecutive region beginning with

the designated register, using block format in elements of the tile register table specified
by table name, row number, and column number. The data is processed assuming the
form of the elements in the storage and the format of the storage source register
conform.
In referencing a table, if there is anything invalid in the name, row number, column
number, or insufficient length at data destination, an error is reported, and the data
is not read. The contents of the register for storage are kept.
Upon normal completion, the number of words transmitted is set in the A register,
the B register turns OFF. When an error occurs, an error code is set in A register, and
B register turns ON. For error codes, refer to Table 4.34.

Table 4.36 Table of Block Write Instruction Parameters

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] From the table defined as TABLE 1, with DWOOOlO to DW00013 as a parameter
table, data (element type is integer type) from the starting table element position to
the end position are stored in block form in the area beginning with MW00100.

) Row Search Instruction (TBLSRL) I

4.12.3 Row Search Instruction: vertical Direction (TBLSRL)

Format]

TBLSRL [Name of table to be searched. 1 ,
[Head Address of [Head Address of
Search Data] Parameter Table]

Register address (except Register address
for # and C registers) Register address wit
Register address with subscript
subscript (except for# and
C registers)

!scription] The row search instruction searches the column element of a file register table spec&
by table name, row number, and column number, and if there is data which match'
the data of the register, reports that row number. The type of the data to be search1
is automatically judged based on the table specified.
In referencing a table, if there is anything invalid in the name, row number, coIun
number, or insufficient length at data destination, an error is reported.
Upon normal completion, the B register turns OFF. If matching column elemen
were found, a "1" is set in the search result, and in register A, the corresponding ra
number is set. If matching column elements were not found, a "0" is set in the sean
result. When an error occurs, an error code is set in A register, and B register tun
ON. For error codes, refer to Table 4.34.

[Operation of the Register].

Table 4.37 Table of Row Search Instruction Parameters

I
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The table defined as TABLE1 is searched for data which matches MWOOlOO (wher
the type of the searched table is integer) with DWOOOlO to DW00013 as a parametel
table.

ADR
0
2
4

6

TBLSRL TABLEI, M.400100, DAOOOlO a1

Specification
Head row number of the target table element (1 to 65535)
Last row number of the tareet table element (1 to 65535)
Column number of the target table element (1 to 32767)
Search results
0: No matching row 1: Matching row exists

Type
L
L
L
W

I
I
I
I
C

Symbol
ROW1
ROW2
COLUMN
FIND

Name
Head row number of table element
Last row number of table element
Table element column number
Search result

4. BASIC INSTRUCTIONS

1 Column Search Instruction (TBLSRC) (

p2.4 Column Search Insttuctbn: Horizontal Direction (TBLSRC)

Format] [Head Address of [Head Address of
Search Data] Parameter Table]

TBLsRC [Name of table to be Register address (except Register address
searched. for# and C registers) Register address with

Register address with subscript
subscript (except for# and
C registers) 1 ' ' .

I
[Description] The column search instruction searches the row element of a file register table specified

by table name, row number, and column number, and if there is data which matches
the data of the register, reports that column number. The type of the data to be searched
is automatically judged based on the table specified.
In referencing a table, if there is anything invalid in the name, row number, column
number, or insufficient length at data destination, an error is reported.
Upon normal completion, the B register turns OFF. If matching row elements were
found, a "1" is set in the search result, and in register A, the corresponding column
number. If matching column elements were not found, a "0" is set in the search result.
When an error occurs, an error code is set in A register, and B register turns ON. For
error codes, refer to Table 4.34.

I Table 4.38 Table of Column Search Instruction Parameters

I I
0: No corresponded column 1: Carresponded column exists

ADR
0
2
4
6

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

1 [Example(s)] The table defined as TABLE1 is searched for data which matches MWOOlOO (when the
type of the searched table is integer) with DWOOOlO to DW00013 as a parameter table.

Type
L
L
L
W

Symbol
ROW
COLUMN1
COLUMN2
FIND

Name
Table element row number
Head column number of table element
Last column number of table element
Search result

Specification
Row number of the target table element (1 to 65535)
Head column number of the W e t table element (1 to 32767)
Last column number of the target table element (1 to 32767)
Search results

UO
IN
IN
IN
OUT

I Block Clear Instruction (TBLCL) I

4.12.5 Block Clear Instruction (TBLCL)

Format] [Head Address of
Parameter Table]
Register address TBLCL [""Ublen-] , [Reglster . . address with

- , subscript . . I
[Description] The block clear instruction clears the data of the block element of a file register tab1

specified by table name,.row number, and column number. If the type of the elemer:
is a character string, a space is written, and a 0 is written if it is a numerical value.]
both the head row number and the head column number of the table elemen
destination are 0, the entire table will be cleared. In referencing a table, if there i
anything invalid in the name, row number, column number, or insdkient length s
data destination, an error is reported, and the data is not read.
Upon normal completion, the number of words cleared is set in the A register, the :
register turns OFF. When an error occurs, an error code is set in A register, and :
register t q s ON. For error codes, refer to Table 4.34.

[Operation of the Register]
0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

Table 4.39 Table of Block Clear Instruction Parameters

[Example(s)] The designated block in the table defined as TABLE1 is cleared using DWOOOlO to'
DW00013 as a parameter table.

TBLCL TABLE1, DAOOOlO a
=3 M w O O O l l

L
Il
U
11
U

Specification
Head row number of the target table element (0 to 65535)
Head column number of the W e t table element (1 to 327673
Number of row elements (1 to 32767)
Number of column elements (1 to 32767)

Name
Head row number of table element
Head column number of table element
Number of row elements
Number of column elements

Symbol
ROW
COLUMN
RLEN
CLEN

ADR
0
2
4
5

Type
L
L
W
W

4. BASIC INSTRUCTIONS

[Inter Table Block Transfer Instruction (TBLMV)~

I 12.6 lnter Table Block Transfer Instruction (TBLMV)

I
[Format] [Head Address of

Parameter Table]

TBLMV [Transfer source table Transfer destination Register address
name table name 1 , [Register address with

subscript I
Pescription] The inter table block transfer instruction transfers the data of a block element of a file

register table specified by table name, row number, and column number to another
block. Transfers both between different tables and transfers within the same table
are possible, but if the type of the transfer source and transfer destination are not
identical, an error is reported, and the data cannot be written.
In referencing a table, if there is anything invalid in the name, row number, column
number, or insufficient length a t data destination, an error is reported, and the data
is not read.
Upon normal completion, the number of words transferred is set in the A register, the
B register turns OFF. When an error occurs, an error code is set in A register, and B
register turns ON. For error codes, refer to Table 4.34.

I (1 to 32767)
6 1 L I ROW2 JHead row number of table element I Head row number of the transfer destination table I IN

Table 4.40 Table of lnter Table Block Transfer Instruction Parameters

ADR
0

2

4
5

[Operation of the ~egister]

1

0 : stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

Type
L

L

W
W

[Example(s)] There are tables defined as TABLEl and TABLE2. The designated block in TABLEl
is transferred to the designated block in TABLE2 using DWOOOlO to DW00015 as a
parameter table.

8

TBLMV TABLEI, TABLE2, DAOOOlO
2 MWooo11

Symbol
ROW1

COLUMN1

RLEN
CLEN

L

Name
Head row number of table element

Head column number of table element

Number of row elements
Number of column elements

COLUMN2

Specification

Head row number of the transfer source table element
(1 to 65535)
Head column number of the transfer source table
element (1 to 32767)
Number of transfer row elements (1 to 32767)
Number of transfer column elements

UO
IN

IN

IN
IN

Head column number of table element
element (1 to 65535)
Head column number of the transfer destination table
element (1 to 32767)

IN

I Cue Table Read Instruction (QTBLR, QTBLRI) I
4.12.7 Cue Table Read Instruction (QTBLR, QTBLRI)

Format] [Head Address of mead Address of
Transfer Destination Data] Parameter Table]

Transfer source table Register address (except Register address
for # and C registers) Register address wit1
Register address with subscript
subscript (except for# and I I C mgisters)

1, . [
pescription] The cue table read instruction continuously reads column elements of a file registe

table specified by table name, row number,!and column number, and stores i t i
consecutive areas beginning with the specified register. The type of the element to b
read is automatically judged based onthe table specitied. The type of the register fc
storage is ignored. The read value is stored according to the table element forma
without type conversion. The cue table read pointer is notchanged by a QTBL
instruction. The cue pointer is advanced one row by a QTBLRI instruction. I
referencing a table, if there is anything invalid in the name, row number, colum
number, insdicient length at data destination, or the cue buffer is empty, an error i
reported, the data is not read, and the cue pointer does not advance. The contents (
the register for storage are kept. . .
Upon normal completion, the number of words transferred is set in the A register, th
B register turns OFF. When an error occurs, in error code is set in A register, and :
register turns ON. The pointer value does not change. For error codes, refer to Tab1
4.34. . . .

Table 4.41 Table of Cue Table Read Instruction Parameters

ADR
0

2

4

will vary as in Table 4.42.

 able 4.42 Settings for Relative Row Numbers for Table Elements

Type Symbol Name Specification I4
L ROW Relative row numbers for table elements Relative column number of the target table element I1

(0 to 65535)
L COLUMN Head column number of table element Head column number of the target table element I1

W CLEI
I read out (1 to 32767)

5
6
8

2 ; 1 (Write poin~-- - ~

3 I (Write pointer rowj-j: I IYO pomcer aavance I

By setting relative row numbers for the table elements, the actual row position read

W
L
L

-
Relative row numbers

0
1 1

ter row)-1 I No pointer advance
~, " I . I

Reserve
RPTR IRead pointer I Read pointer of the cue after execution I OU
WPTR (Write pointer I Write pointer of the cue after execution I OK

. .
I I

n ; . I (Write pointer row)-(n-1) . 1 No pointer advance

Row read
Read pointer row
Write pointer row

[Operation of the Register] .
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

Remark
Pointer advance for QTBLRI only
No pointer advance

[Example(s)] Column element data (element format assumed to be integer) from the table defined
as TABLE1 is stored for the number of column elements beginning with MWOOlOC
using DW00010'to DW00012 as a parameter table.

QTBLRI TABLEI, MA00100, DAOOOlO

4. BASIC INSTRUCTIONS

I Cue Table Write Instruction (QTBLW, QTBLWI)l

k2.8 Cue Table Write lnstruction (QTBLW, QTBLWI)

Format] mead Address of mead Address of
Transfer Source bataj Parameter Table]

Register address
[QTBLJ [] , [subser~pt . ,

Register address
Reg~ster address with

BTBL
Register address with
subscript

[Description] The cue table write instruction continuously reads data from consecutive areas
beginning with the specified register, and writes it to column elements of a file register
table specified by table name, row number, and column number. Data is processed
assuming the format of the element of the table at the location to be stored a t is the
same as the type of the register storage source.
The cue table write pointer is not changed by a QTBLW instruction. The cue pointer
is advanced one row by a QTBLWI instruction.
In referencing a table, if there is anything invalid in the name, row number, column
number, insufficient length at data destination, or the cue buffer is full, an error is
reported, the data is not written, and the cue pointer does not advance.
Upon normal completion, the number of words transferred is set in the A register, the
B register turns OFF. When an error occurs, an error code is set in A register, and B
register turns ON. The pointer value does not change. For error codes, refer to Table
4.34.
Table 4.43 Table of Cue Table Write lnstruction Parameters

ADR l ~ y p e I Symbol 1 Name

6 1 L I RPTR I Read pointer I Read pointer of the cue after execution 1 OUT
8 1 L 1 WPTR 1 Write pointer I Write pointer of the cue after execution 1 OUT

SpeciGcation I uo

2

4

5

By setting relative row numbers for the table elements, the actual row position write
will vary as in Table 4.44.

0 I L 1 ROW I Relative row numbers for table elements I Relative column number of the target table element I IN

Table 4.44 Settings for Relative Row Numbers for Table Elements

L

W

W

2 I(Write pointer row)-1 I No pointer advance
3 I(Write pointer row)-2 I No pointer advance

I I

COLUMN

CLEN

Relative row numbers
0
1

n I (Write pointer row)-(n-1) 1 No pointer advance

[Operation of the Register1

Rasewe

Head column number of table element

Number of column elements

Row write
Write pointer row
Write pointer row

-
0 : stored X : not stored

: indeterminate
(Stored or not stored depending on the case.)

Remark
Pointer advance for QTBLWI only
No pointer advance

[Example(s)] Integer form consecutive data for the number of column elements beginning with
MWOOlOO is written in column element data in the table defined as TABLE1 using
DWOOOlO to DW00013 as a parameter table.

(0-65535)
Head column number of the target table element
(1 to 32767)
Number of column elements to be continuously
written (1 to 32767)

QTBLWI TABLEI, MA00100, DAOOOlO
3 MWooo11

IN

IN
-

I Cue Pomter Clear Instmct~on (QTBLCL) I
4.12.9 Cue Pointer clear Instruction (QTBLCL) ?

Format] QTBLCL [Transfer source table name]

pescription] The cue pointer clear instruction returns the cue read and cue write p in ter of the E
register table specified by table name to initid status (first row).
Upon normal completion, a " 0 is set in the A register, the B register turns OF1
When an error occurs, an error code is set in A register, and B register turns ON.
For error codes, refer to Table 4.34.

. c

[Operation of the Register]
0: stored X : not stored
* : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] 'The cue read and cue write pointer of TABLEl are reset to initial status.

QTBLCL TABLEl
. ,

5. SFC PROGRAMMING

5 SFC PROGRAMMING

The programming method, in which SFC's (sequential
function charts) are used, is described in this chapter.

5.1 Configuration of an SFC Program

As shown in Fig. 5.1, a n SFC program is composed of a n SFC flowchart, a n SFC action box, and E

SFC output definition time chart.

Ladder program &

I I SFC Output Dehnidon Tune Ch

Fig. 5.1 Configuration of an SFC Program

5.2 Execution of SFC

As shown in Fig. 5.2, the SFC program is executed by the SFC instruction in the ladder program
The SFC program is executed through step transition control, which is managed by the use of systr
step numbers. The system automatically assigns a system step number to each step name. The r
signed system step number can,be checked a t the SFC Output Delinition Time Chart screen o f t
CP-717. Since the system step number will he changed when a n SFC step is added or deleted, do E
make changes in the SFC flowchart while the line is running.

Fig. 5.2 SFC Instruction

SFC

EXECUTE OUT
DATA

Table 5.1 VO Registers

VBAAAAAA *

Description

. SFC execution instruction
Execution control (step transition control) of the SFC is carried out
when this register is ON.

. The current system step will always be set to the initial step when this

VBnOnUUn
(EXECUTE)

V B M u
(OUT)

VWAAAAA

egisters that can
?e designated (V=)

.S, I, 0 , M, D, C,

'

vAOOOClO

0 , M, D

, ,

M.D Designation of the head register number of the register area for the
SFC system operation.
See Section 5.3, "SFC System Operation ~e$ster" for details.
SFC step transition output (becomes ON when step transition is carried
out).
Within a parallel process, this will contain the result ofthe final parallel
process sequence.
Designation of the user step number output corresponding to the current
system step
See Section 5.7, "Step Name Designation Method" for details.

5. SFC PROGRAMMING

1.3 SFC System Operation Registers
-

I The system operation registers necessary for the execution of an SFC program are set up as shown in
Table 5.2. When an SFC program is to be used, these registers may not be used for other purposes.

Table 5.2 Assignment of the SFC System Process Registers

I process is being carried out".
03 1 User step search input I For searching for the system step corresponding to the user step.

Register No.

VW[IO[I 00
01

02

Name

System step - current value
System step - previous value

Transition timer for count

04
05
06
07

Description

System step number when an ordinary process is being carried out".
System step number prior to transition when an ordinary
process is being carried out".
Count register used for the transition timer when an ordinary

08

SFC output bit "- 1
SFC output bit " - 2
SFC output bit '3 - 3
SFC output bit "- 4

For SFC parallel process For system use
control

09
10
:
17

User step no. : Bit 0 to Bit E. search execution command : Bit F.
Output data from the SFC Output Definition Time Chart (0 to 15).
Output data from the SFC Output Definition Time Chart (16 to 31).
Output data from the SFC Output Definition Time Chart (32 to 47).
Output data from the SFC Output Definition Time Chart (48 to 63).

-.
18
:

25

For SFC function operation

- -

26
27
28
29

Step number of each process when a parallel process is
being carried out.'2

For SFC function operation Count register used for the transition timer for each parallel
process when a parallel process is being carried out."

" : Ordinary process : Only a single step is processed.
'2 : Parallel process : A plurality of steps are processed simultaneously and in parallel by parallel

pmess branching.
'3 : SFC output bit : In parallel processing, the logical sum (OR) of the outputs of the parallel pm-

cess steps is output.

SFC output bit " - 5
SFC output bit '3 - 6
SFC output bit 9 - 7
SFC output bit '3 - 8

Output data from the SFC Output Definition Time Chart (64 to 79).
Output data from the SFC Output Definition Time Chart (80 to 95).

Output data from the SFC Output De6nition Time Chart (96 to 111).
Output data from the SFC Output Definition Time Chart (112 to 127).

-
5.4 SFC Flowchart

The SFC flowchart is prepared using steps, transition conditions, and connection designations. 'I
sequence proceeds from the initial step in accordance with the transition conditions and the transiti
to the next step is performed when conditions are satisfied. The transition of the execution oft
steps is performed from top to bottom. If the SFC program cannot be prepared with just one fl,
chart, it can be divided into a plurality of flowcharts (or composed of subroutines).

Step :One step in a sequence.
Expressed with a box (0) and a step name (with 6 or less alphanumeric or symba
characters).
A step can be in the logic state of ON (active) or OFF (inactive) and when a step becomes (
(active), the SFC Action Box associated with the step is executed.

.A system step number controlled by the system is assigned to the step automatically. The S:
is controlled by means of these step numbers. .

. . , .

Transition condition : The logic condition that must be satisfied fbistep transition.
A - NO contact condition (- ,) : Step transition is carried out when ON. . '

- . NC contact condition (f) : Step transition is camed out when OFF.
. . Timer transition condition (+) : Step transition is carried out after the set time.

Single-token Structure (designation of ordinary branching connection)
- A n ordinary process branching or convergenc'e i s expressed with a single li
(-) and only one of the branch processes is executed.If a pl+ty of conditions are satisfi~
the condition a t the left side has priority.

- Branching designation, convergence designation, and converging connection designation m
be used. !

Multi-token.Structure (designation of parallel branching connection)
.A parallel process branching or convergence is expressed with a double line (=) and para1
processes are executed simultaneously and in parallel.

- Branching designation, convergence designation, and converging connection designation m
be used.
The number of parallel process branches must 6 or less.

A t the branching point of a parallel process, the parallel processes are started simultaneouf
after the transition to the step.

A t the parallel process convergence point, the transition to the step following the converger
~ o i n t is carried out when all of the oarallel orocesses have reached the step prior to t -~ ~~~~

convergence point and the transition conditions are satisfied.

I UT#'Ol: NT#001: ST# 01 STEP. REG-DW00000 . . STEP -029

5. SFC PROGRAMMING

SFC Action Box

The SFC Action Box is prepared using the ABOX and SBOX in$~dions. The program, that is to be
executed when a step in the SFC flowchart becomes ON (active), is prepared in the SFC Action Box.
This program is prepared with ladder programming language and text type language. One step of an
SFC Action Box Program will consist of the instruction sequence up to the ABOX instruction or SBOX
instruction of the next step and the SFC Action Box Program comprising all steps is ended with an
AEND instruction .
I t is not necessary to create an action box for each step. An Action Box is created only for steps which
require pmessing.

ABOX Instruction
With this instruction , the corresponding program is executed on each scan from the point a t which
the corresponding step is entered and until the transition to the next step is camed out.

SBOX Instruction
With this instruction, the corresponding program is executed just once at the point of the transition
to the corresponding step.

Step S-00 +

Action Box

Action Box

Step 5-02 ,
Action Box I
EndofAU /
Action Boxes

SFC Output ~efinition Time Chart

The SFC Output Definition Timechart is used to designate the output data for each SFC step in
time chart form. The output data. that are designated a t theSFC Output Definition Time Chart a
output to the SFC system operation registers (VW000 04 to VWnOO 07, VWOnn 26 to VWOnn 2
upon execution of the SFC program. The output data (VW000 04 to VWOOn07, VWUo0 26
VW000 29) are cleared to 0 before SFC execution, and updated after SFC execution. Therefore, tl
output data can not be referenced inside the Action Box. The following items should be set in the tic
chart.

Step name
Each step name is displayed in,each column.
Number of output points . .
Can be designated in multiples of 16 (max. = 128).
Output name
Can be s~ecified with 8 or less al~hanumeric characters.
This is &ed as a comment.

UT#Ol: NT#001: ST# 01 OUTPW16 STE -019
B I ~ No. Symbol System Step

Name

5. SFC PROGRAMMING

Step Name Designation Method

The user may designate step names freely as long as they are within 6 alphanumeric characters in
leneth and start with a character from "A" to "2". However. use the followina desimatine method if the - - -
us& step number of a specific step name is to be taken out.

Step name :

User step number (1 to 32767)*
The initial character must be an "S."

(* The user step number is a designated number given to a step by the user. It is not the
number managed by the system.

(Examples) S0001,S0002,S0100, etc.

Execution of an SFC program. I-'

The user step number of the
currently executed SFC step is
stored. When executing a multi-
token, the user step number of the
last executed SFC step is stored.

For step names designated by another method than the one above, the user step number becomes
"0." In this case, a user step number which corresponds to the step name is not taken out.

*VWOOMO

EXECUTE OUT
DATA

VAOm 00

Taking Out System Step Nos.

f i

The SFC controls the execution stepswith the system step numbers that the system assigns
automatically. In order to change the SFC execution forcibly to another step, take out thesystem step
No. and change the execution step.
If an execution step is to be changed forcibly, such as in forced execution of a error processing sequence,
the program is prepared using the SFCSTEP instruction. The SFCSTEP instruction takes out the
system step number assigned to the step name. A program example of a error processing sequence is
shown below.

IFON Step name
1

SFCSTEP ERRSOl
I When an error occurs: JVWnnuOO Change the execution step forcibly by

VAOOOOO] I

I taking out the system step number of
IEND 1 ERRS01 (error processing step) and

I
NOTE
1. If forced transition is to be performed, a timer transition condition cannot be used as a transition

condition for the step which is the destination of transition.
2. Do not execute forced transition of an execution step from a step located within a multi-token

structure.

5-7

t-"
SFC

EXECUTE OUT
DATA

I storing it into the system step current
I value register (VW000 00). "
I

5.9 Precautions upon Preparation of an SFC Program

Note the precautions shown in Table 5.3 upon preparing an SFC program.

Table 5.3 Precautions upon Preparation of an SFC Program

Precaution
Only one SFC program can be programmed in one DWG. , -

The maximum number of steps in an SFC program is 500:
A branching or converging connection cannot be designated below and above

L same start step name and which contain a multi-token structure. J
A subroutine containing a multi-token structure cannot be called from within I 5.9.4

See Section
-
-

5.9.1
- -

one transition condition.
A convergence point must be provided if a multi-token structure is branched.
The number of branches in a multi-token structure must be 6 or less.

r One cannot prepare a plurality of subroutines which have the 1

-
a multi-token block:
A subroutine containing a multi-token structure cannot be called tiom with I 5.9.4

5.9.2
5.9.3

a single-token block unless the conditions for subroutines are satisfied.
Subroutines may only be nested up to 4 times (depth of the macro) in each I 5.9.4
step in a single.token or multi-token block.
Jumoing to a steo in the middle of another block cannot be ~erformed from a I 5.9.4 -
step inside a single-token or multi-token block.
The timer transition instruction cannot be used in a subroutine called tiom I 5.9.4
a multi-token structure. I
The same step name cannot be used in different blocks. 5.9.5

4 subroutine (Macro)

In eases where a step leads to more than 6 branches, the series of steps may be taken out and
newly programmed as a separate block by assigning a representative step to the main routine.
Such a block is called a subroutine (macro).

Miun Routine Subroutine
IXk Start step

~ n d step

A series of steps fiom a start step to an end step is called a block.

5. SFC PROGRAMMING

Restrictions concerning Branching and Converging Connections

A single-token or multi-token branching or converging connection cannot be designated below and
above one transition condition. If branching and converging connections are not designated correctly,
the program cannot be written in. Examples of restrictions concerning branching and converging
connections and correct programming methods are shown below.

(Example 1) -

@ Above : return point of a single-token structure
Below : branching point of a multi-token structure

(Example 2)

@Above :branching point of a single-token structure
Below : branching point of a multi-token structure

Correct programming .---------------___------------------
I

@ Above : convergence point of a multi-token structure
Below : convergence point of a single-token structure

Correct programming

1
I+,

T SBOOOoOa 1

@Above : convergence point of a multi-token structure
Below : convergence point of a single-token structure

(Example 3) :

1. I a ---------. I . (
Correct programming ------------------------------------

@ Above: branching point of a single-token @Above : convergence point of a multi-toke
structure structure

Below: branching point of a multi-token Below : convergence point of a single-tokt
structure . . structure

(Example 4)

P

@Above : wnvergence point of a multi-tokenstructure
Below' : branching point of multi-token structure ,

Correct programming

5. SFC PROGRAMMING

Restriction concerning Branching and Converging Connections in a Multi-Token Structure

A convergence point must be provided if a multi-token structure is branched.
If branching and converging connections are not designated correctly, the program cannot be written
in.

The multi-token structure remains branched since a step is set as an end
step within a branch of a multi-token structure.

5.9.3 Restriction of the Number of Branches in a Multi-Token Structure

If there are 6 or 'more branches in one block in a single-token structure, the block may be divide,
two to prepare the program. However, such a program cannot be prepared in the case of a multi-to
structure.
The maximum number of steps that can be executed parallel in a multi-token structure is 6. A prog
with more than 6 branches will therefore be erroneous. A program will also be erroneous if there
a plurality of blocks havingthe same start step name and containing a multi-token structure I
Examples 1 and 2). The program cannot be written in such cases. Change the program so that
number of parallel executed steps will be 6 or less. There are no restrictions in the number of branc
in the case of a single-token structure.

(Example 1)

ILssu_l T

(Example 2)

T

5. SPC PROGRAMMING

.4 Restrictions concerning Subroutines

Several conditions, which depend on whether'the calling source of the subroutine (main routine) and
the subroutine itself are a single-token structure or a multi-token structure, must be satisfied when
preparing a subroutine in an SFC program. The program cannot be written in unless such conditions
are satisfied.

O When calling a subroutine with a single-token block from a single-token block
- A compose error will occur if the following conditions are not satisfied
(Conditions)

1. Subroutines must not be nested more than 4 times.
2. Jumping must not be performed to a step in the middle of the subroutine.

Single-token block

Single-token block See a.
-Multi-token block See @ .

@ When calling a subroutine with a multi-token block from a single-token block
A compose error will occur if conditions 1 and 2 below are not satisfied.
A compile error wiU occur if condition 3 below is not satisfied.

(Conditions)
1. Subroutines must not be nested more than 4 times.
2. Jumping must not be performed to a step in the middle of the subroutine.
3. The subroutine side must not be branched immediately into a multi-token block.

Multi-token block

See O .
See @ .

@ When calling a subroutine with a single-token block from a multi-token block - Compose error will occur if conditions 1 and 2 below are not satisfied. - 'WARNING" is issued if condition 3 below is not satisfied.
(Conditions)
1. Subroutines must not be nested more than 4 times.
2. Jumping must not be performed to a step in the middle of the subroutine.
3. A timer transition instruction must not be used inside the subroutine.

@ When calling a subroutine with a multi-token block fmm a multi-token block
Compose error will occur.

(1) Restrictions concerning Nesting (Depth of Macro)
Subroutines can only be nested up to 4 times (depth of macro). Prepare the program so
subroutines will be nested only 4 times or less.

0 0' 0 0
(Good) (Good) (Good) (Good)

Nesting = 1 Nesting = 2 Nesting = 3 Nesting = 4

5. SFC PROGRAMMING

(2) Restrictions concerning Jumping
Programs, in which jumping is performed to a step in the middle of a subroutine as shown below,
cannot be prepared. Shown below are examples of restrictions concerning jumping and correct
programming methods.

(Example 1) - (Poor Example) Correct programming method

m ma

(Example 2)

=P

__+ Chmge (Good Example)

(Poor Example)

L"4leJ

1 Change to

Correct programming method w

(3) Restrictions concerning Branching
Branching into a multi-token structure cannot be performed immediately after the start step
a subroutine called by a main routine. Shown below are examples of restrictions concernil
branching and correct programming methods.

(Bad Example) (Bad Example)

Correct programming

---- ---- 3
Change to . .

' - - - - - - -.....- .-------....--- --.

5. SFC PROGRAMMING

(4) Restrictions concerning the Timer Transition Condition Instruction
A timer transition instruction cannot be used in a subroutine that is called from a multi-token
structure. If a timer is required, prepare a program in which an on-delay timer instruction is used
outside the SFC gadder program) and received by a coil and the coil is used as an NO contact
transition instruction of the SFC. This programming method is shown below.

(Ladder Program)

l-ik SM:

DEND

DEND
(SFC Flowchart)

1-1 Main Routine
(Bad Example)

(1) When the following conditions are satisfied in one multi-token block:
(Conditions)

1. Only one subroutine is called from the multi-token structure, and
2. Only one timer transition instruction is used in the subroutine called, and
3. The timer transition instruction is not inside an SFC loop circuit.

I

II (2) When the following conditions are satisfied when there are a plurality of subroutines
called from a multi-token structure in one multi-token block:

The timer will operate correctly in the following exceptional cases.
However, ordinarily, change the program as shown above to avoid restrictions.

I (Conditions)
1. There is only one subroutine which uses a timer transition instruction, and
2. The timer transition instruction is not inside an SFC loop circuit.

5.9.5 Restrictions concerning Step Names .

With the exception of the start step names and end step names in a macro, the same step nar
cannot be used for different blocks. This condition applies in common to multi-token blocks a1
single-token blocks. Change the step names to prepare the program in such cases. A program cam
be written in if the same step name is used.

(Bad Example)

Step name is overlapped.

change to

+Change step nan

6. TABLE FORMAT PROGRAMMING

TABLE FORMAT
PROGRAMMING

Table format programming methods, by which programs
of a specific application are prepared in an FIF (fill in
form) form by the use of tables, are described in this
chapter. Constant tables, UO conversion tables, interlock
tables, part composition tables, and other various tables

are made available. Some tables cannot be used with
the programming device CP-717.

6.1 Types of Table Format Programs

As shown in Table 6.1, there a re 6 types of table format programs. For functions, only the M regis
constant table and t h e # register constant table can be used.'

Table.6.1 T v ~ e s of Table Format Programs . . -

I . Data names, symbols, units, and setting ranges can be designated. I I
I . The 110 conversion processing pans of various processing programs I

> - ,

Constant table
(#register)

1 I/0 conversion

Functio~

0

table

DWG

0

Name

Constant table
(M reeister) -

Data names, symbols, units, and setting ranges can be designated
Used For setting various constant data, such as tension control pa-
rameters and position control parameters, that are used exclus~vely
in a certain drawing.

Interlock table

Usage and Function
Used for setting the various constant data, such as mechanical and

. electrical specifications of equipment, etc., that are used in common
bv different drawines.

may be prepared in a table.
Is provided with the scale conversion function and the bit signal con-
version function.
Data names, symbols, units, and output conversion ranges can be
designated.
Used for preparing various types of interlocks.

A signal name and symbol can be designated for each inputloutput.
An interlock can be prepared as a combination of logical product (AND)
and logical sum (OR) operations using NO contact and NC contact

0

- I signals. I
[:Used to simultaneously prepare a plurality of circuits of a fixed pat- I

0

I Part composition tern, such as solenoid circuits, accessory sequence circuits, etc. X
table Fixed-pattern circuits can be prepared and registered as standard

(software parts as necessary. I I
I . Used in setting various types of data constants used in common on I

1 Constant I various drawings of mechanical and electrical sources of the equip- I X I x

0 : can be used, X : cannot be uied

Table (C register)

Make the table format progrimming on the programming device CP-717. ll

' ment.
The data name, symbol, units, setting range, etd. can be designated

6. TABLE FORMAT PROGRAMMING

Execution of Table Format Programs

Each table format program is executed with the XCALL instruction.

DWGIRinction Program

Constant Table
(M Register)

110 Conversion

Parts Composition L'FI
Table 6.1 Execution Method for Table Format Program

The set values for the constant table (#register) and the constant table (C register) are directly stored
in # register and C register respedively.
Thus, i t is not necessary to use the XCALL instruction for the constant table (# register) and the
constant table (C register).

6.3 Constant Table (M Register)

The M register constant table is used for setting various constant data, such as mechanical and elect
specifications of equipment, etc., that are used in common by different drawings.

. .
6.3.1 Outline of the donstant Table (M Register)

To use the M register constint table, first a constant table is defined as shown in Fig. 6.2. The cons
data are then set using the defined constant table.
When the constant table is stored, M register comments are prepared or renewed automatically accor
to the data name, symbol, unit, and register number of each row. These comments are used for corn
display in the program screens and for comment printout upon printout of documents.

Designation of the table name and drawing
number.
Designation of the data names, symbols, units,
setting ranges, and storage addresses.

1 Innut of Set Value

Input of various set values

. M register comments are prepare
Constant Setting Program renewed automatically when t h

biWl00W ABCnEF -.-.-. regster constant table is stored.
~ 1 0 0 0 1 MMM-
m1w02 BBBBBB ..--.-

Fig. 6.2 Preparation of the M Register constant Table

6. TABLE FORMAT PROGRAMMING

Preparing the Constant Table (M Register)

(1) Defining the Constant Table (M Register)
The following items are set in defining the M register constant table. A maximum of 200 constants
may be set.

Data Name - - ~~~-~

Designate the data name of the constant.
@ Svmbol

~ k s i ~ n a t e the symbol of the constant.
@Unit

Designate the unit of the constant.
@Lower Limit

Designate the lower input limit of the constant.
@ U ~ w r Limit -

D'esignate the upper input limit of the constant.
@Save Point

Designate the M register into which the set values are stored.

(2) Inputs into the Constant Table (M Register)
The set value are input after the definition of the M register constant table has been completed.

6.4 Constant Table (# Register)

The # register constant table is usedfor setting various constant data, such as tension control paramei
and position control parameters, that are used exclusively in a certain drawing.

6.4.1 Outline of the Constant Table (# Register)

As shown in Fig. 6.3, the # register constant table is prepared in the same manner as the # regi!
constant table. A plurality of pages (up to 10 pages/DWG) can be used for the # register constant ta
With the # register constant table, the settings of a plurality of pages are stored in the # registers of
designated drawing (DWG). Also, the #register comments are prepared when the settings are stol
When the constant table is stored, # register comments are prepared or renewed automatically accorc
to the data name, symbol, unit, and register number of each row. These comments are used for comm
display in the program screens and for comment printout upon printout of documents.

L
Definition of Constant Table

Designation of the data names, symbols, units,
setting ranges, and storage addresses.

lnput'of various set values

Generation of # register data and into #Registers #WOO000 ABCDEF comments.
#WOO001 AAAAAA
#WOO002 BBBBBB

Fig. 6.3 Preparation of the # Register Constant Table

6. TABLE FORMAT PROGRAMMING

Preparing the Constant Table (# Register)

.(I) Defining the Constant Table (# Register)
The following items are set in defining the # register constant table. A maximum of 100 constants
may be set per page.

O Data Name
Designate the data name of the constant.

@ Symbol
Designate the symbol of the constant.

@ Unit
Designate the unit of the constant.

@ Lower Limit
Designate the lower input limit of the constant.

O Upper Limit
Designate the upper input limit of the constant.

@ Save Point
Designate the #register into which the set values are stored.

(2) Inputs into the Constant Table (# Register)
The set values are input after the definition of the # register constant table has been completed.
When the input of the set values has been completed, the set values of the various definition data
are stored in the # registers of the designated drawings.

6.5 110 Conversion Table

The UO conversion table enables the UO conversion process of various processing programs to be prepa
as a table. Changes in UO specifications can be made by simply changing definitions in the table.

6.5.1 Outline of the VO Conversion Table

With the UO conversion tables, tables for input conversion and tables for output conversions ;
respectively prepared using different DWG's for each processing program.

. With the input conversiontable, the input registerr
registers) are usually used for the inputs and the M registc
that are used by the processing program, for the output

nversion table, the M registers, that
rogram, are used for the inputs r
registers) are used for the outpt

.1
I I

Output I I
Fig. 6.4 preparation of the VO conversion Table

6. TABLE FORMAT PROGRAMMING

Preparing the VO Conversion Table

Scale conversion of numerical data and various signal conversions of bit signals can be designated
with the UO conversion table. Up to 1200 UO conversions may be designated with one table (DWG).

(1) Scale Conversion Function
Addition, subtraction, multiplication, and division operations, that use immediate values and
arbitrary registers, can be used as scale conversion functions. The following items should be set.
O Data Name

Designate the data name of the data to be converted.
O Input

Designate the register number, the unit, and the symbol of the input data a t each row.
O Scale Converslon

Designate addition, subtraction, multiplication, or division, that uses immediate values and
arbitrary registers, for scale conversion.

@ Setting Range
Designate the upper and lower limits for the output.

O Output
Designate the number of the register into which the conversion result is to be stored and the
unit and the symbol of the output data a t each row.

The UO conversion designation of the 1st row of the above example realizes the same function as the
following program.
r -I I b lWOl00 x lo000 + 1024 * MWOlOOO 1
The UO conversion designation of the 3rd row of the above example realizes the same function as the
following program.

The UO conversion designation of the 5th row of the above example realizes the same function as the
following program.

k IW0201 + MW05000 x MW03330 + MWOlOOO - MW02220 < 01000
[b 01000 I > 30000
[b 30000 1 3 M102002

(2) Bit Signal Conversion ~ a b i e
The 9 types of bit signal conversion shown in Table 6.2 can be designated.

~ a b i e 6.2 List of Conversion Symbols

Name NO contact
Nn rnntsrt. , I A (.)
NC contact I B ()
Pulsed NO contact IPA()
Pulsed NC contact l P B () --

NO contact timer, TA (000 .00)
NC contact timer TB (000 .On)
Designated time pulse for NO contact PTA (000 .00)
Designated time pulse for NC contact PTB (000 .on)
NO contact chattering prevention CTA (000 .on)

The following items should be set.
@ Data Name

Designate the name of the signal to be converted. :
@ Input

Designate the relay number and the symbol for the input signal of each row.
@ Bit Signal Conversion Set

Designate 9 types of bit signal conversion.
@ output
. Designate the number and symbol of the relay into which the conversion result is to be s t

for each row.

6. TABLE FORMAT PRQGRAMMING

Equivalent Ladder Programs
The bit signal conversion designation of the 1st row of the above examde realizes the
same function as the following program.

1
I

The bit signal conversion designation of the 2nd row of the above example realizes the
same function as the followine oromam.

\ I
The bit signal conversion designation of the 3rd row of the above example realizes the
same function as the following program.

'BP Oo3
EBDjI l37 Y B 0 4 ~ 0 3

1 w 1Pm 1
L I

The bit signal conversion designation of the 4th row of the above example realizes the
same function as the following program.

1
L J

The bit signal conversion designation of the 5th row of the above example realizes the
same function as the following program. , IB?f005 901 .00 ~wmm LIB04g05

d-*Mrn)

The bit signal conversion designation of the 6th row of the above example realizes the
same function as the following program.

rn)
I

The bit signal conversion designation of the 7th row of the above example realizes the
same function as the following program. .

IB 4007 E B F YB040007

G i O 0 0 7 1 001.00 ' I EWMHI l E B Q U I I "
I

The bit signal conversion designation of the 8th row of the above example realizes the
same function as the following program.

I

The bit signal conversion designation of the 9th row of the above example realizes the
same function as the following program. , IB!tO- W1.00 E W t D B l EBOOOOOO

V pmrn)

I I
(Note) : The E registers are registers used by the controller. It is impossible for a user to

directly read or write.

6.6 Interlock Table

The interlock table is used to prepare various interlocks, for starting con
etc. of devices, in table format.

6.6.1 Outline of the lnterlock Table

.ditions, running condil

As shown in Fig. 6.5, the interlock table is composed of one main interlock table and the correspol
sub interlock tables. One sub interlock table may be set for one row of the main interlock table. Th
interlock table is used to prepare speciiic input signals for the main interlock table. The main ink
table may be divided into several blocks. The maximum number of blocks is 26 and each blc
handled as an independent interlock. When the interlock table is stored, comments for the reg!
(relays) are prepared or renewedautomatidly according to the data name, symbol, and register nu
(relay number) of each row. These comments are used for comment display in the program screen
for comment printout uponprintout of documents.

. .

I , . . I

: Fig. 6.5 Preparation of the InterlockTable

I Main Interlock Table I Sub Interlock Table 1

6. TABLE FORMAT PROGRAMMING

Preparing the Interlock Table

Each interlock table (main or sub interlock table) is prepared in the same manner as follows. A
maximum of 500 rows and 25 columns of data can be set.
@ Classification of the UO signal: This is designated according to the mode 0. The following 4

modes can be used.
I : Designates a signal to be an input signal.
S : Designates an output signal from a sub interlock table to be used as an input signal.
0 : Designates a signal to be an output signal.
X : Designates the contact of an output signal to be used as an input (self-hold circuit).

@ Data Name
Designate the name of the interlock condition to be input for each row.

O Symbol
Designate the symbol of the interlock condition to be input for each row.

O Register
Designate the register number of the interlock condition to be input for each row.

@ Interlock lnput Condition
For each input signal, designate the interlock condition, which is to be used as the condition for
obtaining the logic product (AND) for each column. The NO contact condition () and the NC
contact condition () can be used as interlock conditions.

@ Interlock lnput Condition
For each output signal, designate (0) the above mentioned interlock conditions to be used as
conditions for obtaining the logic sum (OR) for the corresponding row.

The logical product (AND) of the input symbols, which were designated as the interlock conditions,
is determined for each column and the output signal is prepared as the logic sum (OR) condition of
the logical product results of the columns designated at each output signal row. Thus the following
interlock table will be equivalent to the ladder program shown in the next page.

Eauivalent Ladder ~ r c k r a m :

HHHH
1801000 ME010001 YBOlOOlO B010014 lPWlWl4

HH
MI-PIR E-PIR . IB-m W - m M5-m m

IBOlOOl 1801002 1801003 IBOlW 1801005 P1010020
HHHH

6.7 Part Composition Table

The part composition table is used to simultaneously prepare a plurality of circuits of a fixed pattc
such as solenoidcircuits, accessory sequence circuits, etc.

6.7.1 Outline of the Part Composition Table . .

The part composition table is composed of functions, that are used as parts, and the part composil
table. The functions to be used as parts should be prepared before using them in the part cornposil
table. . .

Parts Database

Function : ABCDEFG
I h Each part is composed of the main body of the funcl

program and the function UO definition.

Fig 6.6 Preparation of the Part Composition Table

d#
Part Composition Table

A plurality of circuits, which use the designated parts, a
prepared simultaneously. . Each circuit is prepared by delining the inputs and outpu
of the circuit with the register numbers.

6. TABLE FORMAT PROGRAMMING

Preparing the Part Composition Table

With the part composition table, a plurality of circuits with the same pattern can be prepared
simultaneously using designated parts. In the part composition table, one row corresponds to one
circuit and names, inputs, and outputs are designated for each row to prepare a plurality of circuits.
The parts to be used can be designated for each row. The maximum number of inputs and the maximum
number of outputs is designated by the user. A maximum of 100 circuits can be prepared.
@ Data Name

Designate the name of each circuit.
@ Part Name

Designate the function symbol or user function name of the function to be used as a part.
O Input

Use register numbers to designate the inputs of each circuit. The register whose number is
designated here will provide the input to the user function.

@ Output
Use register numbers to designate the outputs of each circuit.

@ Head Work
Designate the number, in word form, of the D register or # register which is to be the head work
register to be used for each circuit.

6.7.3 Preparing the Function Program for Parts

The parts (main bodies of function programs and function UO definitions) to be used in a part composi
table should be prepared in advance. Although the preparation method is the same as that for or&
function programs, the following data are used for the inpuffoutput of parts and the work registel

Input of Parts
The inputs designated at the function 110 definition will b6 used as the inputs for the parts. Refi
"Chapter 3 REGISTER MANAGEMENT METHOD" concerning the relationship between the il
definition for a function and the input variables (X registers) used in the function.

Out~ut of Parts
h e outputs designated at the function U 0 definition will be used as the outputs for the parts. R
to "Chapter 3 REGISTER MANAGEMENT METHOD concerning the relationship between
output definition for a function and the output variables (Y registers) used in the function.

Work Register
The Z register corresponds to the D register of a DWG and the # register corresponds to t:
register of a drawing and the sum of the head work register number of the part composition t
and the relative register number of that register is used a's the number of the actual work regi

6. TABLE FORMAT PROGRAMMING

Constant Table (C Register)

The C register constant table is used for setting various data constants common to all DWG such as
equipment and manufactured sources. A maximum of 200 constant tables (C register) can be created.

Outline of the Constant Table (C Register)

Multiple definitions of set values are stored in the C register by the constant table (C register).
Also, the C register comments are prepared at the same time the set values are stored.
When the constant table is stored, C register comments are prepared or renewed automatically according
to the data name, symbol, unit, and register number of each row. These comments are used for comment
display in the program screens and for comment printout upon printout of documents.

Input of Settings

Designation of the data names,
symbols, units, setting ranges,
and storage addresses.

J. J.

into C Registers
CWOOOOO ABCDEF
CWOOOOl AAAAAA
CW00002 BBBBBB

Generation of C register data
and comments.

Fig. 6.7 Preparation of the C Register Constant Table

6.8.2 Preparing the cbnstant Table (C kgister)

(1) Defining the Constant Table (C Register)
The following items should be set in defining the C register constant table. A maximum of 1631
constants may be set per page.
O Data Name

Designate the data name of the constant.
O Symbol

Designate the symbol of the constant.
@ Unit

Designate the unit of the constant.
@I Lower Limit

Designate the lower input limit of the constant.
@ Upper Limit

Designate the upper input limit of the constant.
@ Save Point

Designate the C regist& into' which the set values are to be stored.

(2) inputs into the Constant Table (C Register)
The set values should be input after the definition of the C register constant table has bee
completed.

7. STANDARD SYSTEM FUNCTIONS

STANDARD SYSTEM

The functions that are provided as standard system
functions and their UO parameters are described in this

chapter.

7.1 Data Trace Read Function (DTRC-RD)

Name of Functioi

Function

Function
Definition

U0 Definition

Input

output

DTRC-RD
Leads out the trace data of the main controller unit and stores this data in the user registers
'he data in the trace memory can be read out upon designating the record number and t h
.umber of records. The readout can be performed by designating just the necessary items ii
he record.

. . ======.,

DAT-ADR

- I (0 to maximum record number -1)
I IREC-SIZE 11-REG I Designation of the number of records requested for readou'

lo.

1 -
! .
I 1

I (1 to maximum record number)
i ISELECT 11-REG I Item to be read out (0001H to FFFFH)

Name

EXECUTE
GROW-NO
REC-NO

OR I B-VAL I O m e n c e of error
TUS 11-REG I Data trace read execution status

i

' : Indicates the UO designation a t the'CP-717.

UU
Designation*

B-VAL
I-REG
I-REG

Configuration of the Data Trace Read Execution Status (STATUS)

Description

Designation of the execution of data trace read
Designation of the data trace group No. (1 to 4)
Desienation of the head record No. for readout

DAT-ADR-

I . ' Name I Bit No. I Remarks

Address input

Bits 0 to F correspond to data designations 1 to 16 of t h ~
trace definition.
Designation of the No. of the head register for readout
(address of MW or DWI

System reserved
No trace definition
Group No. error -
Designated record No. error
Error in the designated -
number of records read
Data storage error :
System reserved
Address input error

bit0 to bit7
bit8
blt9
bit10
b l t l l

The function d not be executed.
The function will not be executed.

The function will not be executed.

bit12
bit13 and bit14

bit15

The function will not be executed.

The function will not be executed.

7. STANDARD SYSTEM FUNCTIONS

Readout of Data

Record No. 0

No. of the head
record to be read n

Iata Race Memory
I ~ i = records read into w

___,
address of register
.hich data is read

The most recent record Nos. of trace groups are each stored in SWOOlOO to SW00103 as shown in Table
7.1. To read the most recent trace data, designate the most recent record No. as the record No. to be
read.

Table 7.1 Elewest Record Number

System register number
SWOOlOO
SWOOlOl
SW00102
SW00103

Data trace definition
For group 1

For group 2
For group 3
For group 4

7.1.2 Configuration of the Read Data

(1) Data Configuration

DAT-ADR -

Tdce data

3251Zwords

(2) Record Length

A record is composed of the,data for the selected items.
. ~

Word length of 1 record= Bn X 1 word + ~ n ' X 1 word + Ln X 2 words + Fn X 2 words

Bn: Number of bit t h e register selected points
Wn: Number of word type register selected points A maximum of 1
Ln: Number of double-length integer type register selected points in total.
Fn: Number of real number type register selected points

Maximum record length = 32 words (e.g. when thkre are 16 double-length integer t n
real number type registers)

Minimum record length' = 1 word (e.g. when there is one bittype or integer type re&&

(3) Number of Fiecords

Maximum number of records 32512lrecord length

1ength.i~ the maximum
Number of records when the record
length'is the minimum

Number of records when the record I 0 to 1016

0 to 32512

game of Functioi

Function

7. STANDARD SYSTEM FUNCTIONS

.2 Trace Function (TRACE)
-
J

-

-

-

Function
Definition

UO Definition

Input

Output

TRACE
Performs execution control of the tracing of the trace data designated by the trace
group No. The trace is defined a t "Data Trace Definition" screen (refer to the Control
Pack CP-717 Operation Manual (SIE-C877-17.4, -17.5) for details).

Tracing is executed when the trace execution command (EXECUTE) is set to ON.
The trace counter is reset when the trace reset command (RESET) is set to ON.
The trace end (TRC-END) output is also reset a t this time.
The trace end (TRC-END) output is set to ON when the trace execution count
becomes eaual to the set count (set a t Trace Definition).

I : Indicates the UO designation at the CP-717.

1 /~onfi~uration of the Trace Execution Status (6~1TllS)I

\lo.
1
2
3
1
2
3

es ON after one round of reading of the con
Trace data full trace memory of the designated group has

UO
Designation'
B-VAL
B-VAL
I-REG
B-VAL
B-VAL
I-REG

Name
EXECUTE
RESET
GROW-NO
TRC-END
ERROR
STATUS

System reserved bit15

Description
Trace execution command
Trace reset command
Designation of the trace p u p No. (1 to 4)
End of trace
Occurrence of error
Trace execution status

7.3 Failure Trace Read Function (FTRC-RD)

Function
Definition

ame of Function

Function

, FTRC-RD
Reads the failure trace data and stores them in the user register. The data in the trac
buffer can be read out upon designating themumber of records needed. Either th
failure occurrence data or the restoration data are designated for readout. Enables t h
reset (initialization) of the failure trace buffer.

UO
UO Definition NO. Name Designation* Description

1 EXECUTE B-VAL Failure trace readout command
2 RESET B-VAL Failure trace buffer reset command
3 TYPE I-REG Type of data read

Input 1 : Occurrence data

-EXECOTE

-
- --- --- - --- ---

- - -- - - - - - -- - - - >

1 2 : Restoration data
4 I REC-SIZE I I-REG I Number of read records

Occurrence data: 1 to 64 Restoration data: 450
5 DAT-ADR Address input Head register address for reading (address of MW or DW,
1 COMPLETE B-VAL Completion of failure trace read
2 ERROR B-VAL Occurrence of error

Output 3 STATUS I-REG Failure trace read execution status
4 REC-SIZE I-REG Number of read records
5 REC-LEN I-REG Length of read record

FTRC-BD
MmPiETE-

RnET ERBOR

> m
REC-SIZE W S I Z E

m-m

DAT-Am

Failure Trace Read Execution Status (STATUS)

-
=====::>

.======>,

=======>

1 Name I Bit No. I Remarks

System reserved
No trace definition
Designated group No. error
System reserved
Error in the designated

System reserved I bit13
System reserved I bit14
Address input error I bit15 I The function will notbe executed.

number of records

bit0 to bit7
bit8
bit9

bit10
bit11

1

The function will not be executed.
The function will not'be executed.

The function will not be executed.

Data storage error I bit12 I The function will not be executed.

7. STANDARD SYSTEM FLTNCTIONS

Data Readout (Failure Occurrence Data)

Failure Occuirence
Trace Memory

User register - Head address of
the register into

read records which data is - read
record

The readout will always be started from themost recent record.

Readout Data Configuration (Failure Occurrence Data)

(1) Data Configuration

DAT-ADR + Record 1 of occurrence - old
Record 2

Trace data Max. 320 words

5 word Record n of occurrence - new

(2) Record Configuration

1 word yoardrnonthrbmumnre 1 record (5 words)
1 word Dayandbowof-

1 word 4 M i n u f e P d d o f m u n e

(3) Structure of Register Designation No. (2 words)

Contains the failure detection relay information.

F 8 7 0 (Example) MEW20001 (hexadecimal expression)

Bit address 0 to F

1 word
1 word

Bit Configuration of @
System reserved (= 0)
Data type

Bit = 0, Integer = 1,
Double-length integer = 2, Real Number = 3

\
7
6 -
5
4
2

Bit Configuration of @
Defined flag (1 =defined, 0 =undefined)
System reserved (= 0)

0 =NO contact designation, 1 = NC contact designation
TMe of variable

(4) Number of Records

0 s 0

+- 0 = no failure occurrence data Minimum number of records

Data address

0

01

Maximum number of records I 64

83
07DO

7.3.3 Data Readout (Failure Restoration Data)

Failure Restoration Trace Memory

rn
User register - Head address

Number of the register ir
Record No. read records which data is

___,

The numb'er (amount) of restoration data is stored in SW00093 (ring counter for 1 to 9999).

7.3.4 Readout Data Configuration (Failure Restoration . , Data)

8 word 1 4 1 n m e of restoration - neiv

(1) Data &figuration

(2) Record ,Configuration

2 words Register Designation No. t T

Time of restoration - old T DAT-A~R -+ 8 words
8 words

(3j Number of Records :

Record 1

' Record 2

c 0 = no failure restoration ds Minimum number of records

. .

0
Maximum number of records I 450

Function

Function
Definition

UO Definition

Input

Output

ITRC-RD

Reads out the trace data of the inverter and stores this data in the user r e ~ s t e r s .

4 Inverter Trace Read Function (ITRC-RD)

Name of ~unctionl
I :

-

-

-

7. STANDARD SYSTEM FUNCTIONS

The data in the trace buffer can be read out upon designating the number of records
needed. The readout can be performed upon designating just the necessary items in . - ~

the record.
[Applicable inverters]
Inverters connected via CP-213, CP-215, or CP-216

1 EXECUTE B-VAL
2 ABORT
3 DEV-TYP I-REG

I-REG

Description

I I

I n v e r t e r e read command
Inverter trace read forced interruption command
Twe of transmission device

Address inpi 9

- -
CP-213=2
CP-215=1
CP-216=4

Line No.
CP-213: 1 to 8
CP-215: 1 to 8

DAT-ADR

CP-213: 1 to 8
Slave station No.

CP-213: 1 to 31
CP-216: 1 to 64
CP-216: 1 to 30

Transmission buffer channel No. (No designation)
Number of records to be read (1 to 64)
Items to be read (O O O 1 m p
Bits 0 m F correspond to trace data items 1 to 16.
Head address of data buffer register
(address of MW or DW)
The readine of inverter trace data is in uroeress. - - -
Complehon of inverter trace read
Occurrence of error
Inverter trace read execution status
Number of read records
Length of read record (for 1 record)

* : Indicates the UO designations at the CP-717.

Configuration of the Inverter Trace Read Execution Status (STATUS) I

7.4.1 Readout of inverter Trace Data

number of records
Data storage error '

Transmission error
System resewed
Address input error

Inverter Trace Memory

% .

Remarks

The function is not executed.
-

The function is not executed.

Name
System resewed
Transmission parameter error
System resewed
Error in the designated

User register
+ Head address oft

register into whir

read records data is read

record ___,

Bit No.
bit0 to bit8

bit 9
,bit10
bit11

bit12
bit13
bit14
bit15

The readout will always be started from the most recent record.

The function is not executed.
The function is not executed.

The function is not executed.

7.4.2 Readout Data Configuration

(1) Data Configuration

DAT-UR + 1 to

(2) Record Length
A record is:composed of the-data of the selected,items.
Word length of 1 record = 1 to 16 words

Trace data (1920 words max.)

(3) Number of Records

Maximum number of records = 120

.5 Inverter Constant
7. STANDARD SYSTEM FUNCTIONS

Write Function (ICNS-WR)

ICNS-WR Name of Function

Function

Function
Definition

UO Definition

Input

Output

Writes the inverter constants.
The types and ranges of the inverter constants to be written can be designated.
[Applicable inverters]
[nverters connected via CP-215. or CP-216

,
I
I

h

-
-

-

- ,

-
-

-
I

-
5

-
1
I -
-

i -
1

I CP-216: 1 to 30
5 ICH-NO I I-REG I Transmission buffer channel No. (No designation)
7 ICNS-TYP I I-REG I T w e of inverter constant

lo'

1
Z
3

4

5

Name

EXECUTE
ABORT
DEV-TYP

CIR-NO

ST-NO

3

3

: Indicates the UO designations at the CP-717.

0
1
I
3
L

YO
Designation*

B-VAL
B-VAL
I-REG

I-REG

I-REG

CNS-NO

CNS-SIZE

Description

Inverter constant write command
Inverter constant write forced interruption command
Type of transmission device

CP-215=1
CP-216=4

Line No.
CP-215: 1 to 8
CP-216: 1 to 8

Slave station No.
CP-215: 1 to 64

DAT-ADR
BUSY
COMPLETE
ERROR
STATUS

I-REG

I-REG

- -
0 = direct designation of reference No., 1 =An, 2 = Bn,
3=Cn,4=Dn,5=En,6=h,7=Hn,8=Ln,9=0n,l-

Inverter constant No. (1 to 99)
The upper limit will differ acwrding to the type of inverter,
If CNS-TYP = 0, designate the reference No.
Number of inverter constants

Address input
B-VAL
B-VAL
B-VAL
I-REG

(number of data to be written) 1 to 100
Register address of set data (address of MW, DW, or #W)
Inverter constants are being written in.
The write-in of inverter constants has been completed.
Occurrence of error
Inverter constant write execution status

Configuration of Inverter Constant Write Execution Status (STATUS)

Remarks il
Designated type error I ' bit10 I The function is not executed.
Designated No. error I bit11 I The function is not executed.
Error in number (amount) of the I bit12 I The function is not executed. 11

7.5.1 Configuration of the Write-inData I

designated data
Transmission error
Inverter response error
Address input error

1 Inverter Constants
Acceleration time 1

User register

M

(Note) : In the case of an inverter response error, the error codes from the inverter are indicated in
bit0 to liit7.
olH(1) . : function code error
02H(2) ' : reference No. error
03H(3) : write-in count error
21H(33) : write-in data upperflower limit error
22H(34) : write-in error (during running, during UV)
Numbers in () are of decimal expressions.

bit13
bit14
bit15

A0 optional output ga: B

The function is not executed.
The function is not executed.
The function is not executed.

7. STANDARD SYSTEM FUNCTIONS

Method of Writing to an EEPROM

Procedures for writing constants to an EEPROM (inverter internal constant
storage memory) are shown in Fig. 7.1.

to work memory

WRITE ENTER command

Fig. 7.1 EEPROM Write Procedures

Constants written with the system function "ICNS-WR" are once entered in
work memory. In order to actually store these in EEPROM, it is necessary to
bring up the WRITE ENTER command as shown in Fig. 7.2.

Inverter
"ICNS-WR" function

Shared
memory

WRITE ENTER command

Fig. 7.2 WRITE ENTER Command

(1) WRITE ENTER Command
Using the 'TCNS-WR" function, by writing the data "0'' in the reference number "FFFD," the WRITE
ENTER command is entered for the inverter.

(2) Program Example
An example of a program that writes "200" in the constant "Cl-01" is shown in Fig. 7.3 (0, a
@ First, write to the inverter work memory.

DBOOOOOO L DBOOOOOI DB000002 DB000003
"I

(System Function) :
I :

ICNS-m
(In execution)

ABORT COMPLETE

ERROR

(Inverter constant No.) I 1 ,

ImN (When end normally)
(Command reset)

SB000004 DBOOOOOO
v l u

(Normal operation status)
t 00000
IEND

ImN (When ended with error)

(Error status)
I- Dl00002

(Status held)
' - * Dl00003

(Status held) - WOO003
IEND ,

DEND

': By turning DBOOOOO = ON, a one time only write can be executed.

7. STANDARD SYSTEM FUNCTIONS

@ Actually writing to EEPROM. (Enter the WRITE ENTER command.)

DBOOOOOO DBOOOOOl DB000002 DB000003 DB000004
-3 Y I I I

(Command held) b w

I (System Function)

P
(Command)

ICNS-WR

EXECUTE BUSY

ABORT CQHPLETE

STATUS

(Inverter constant NO.) I

IFON (When end normally)

(In execution:
DB000006

L,

(Completion)
DB000002 -

(Error)
DB000003

(Command reset)

I I I DBOOOOOO
.

(Normal operation status)
I- 00000
I END

IFON (When ended with error)

(Status held)
* DV00003

(Error status) (Status held)
I- Dl00002 * D100003

SB000004
Yl

IEND

DEND
*: By turning DBOOOOO = ON, a one time only write can be executed.

Fig. 7.3 Program Example

NOTE
The WRITE ENTER command writes all constants that have been written to work
memory up to that point to the EEPROM.
If power to the inverter is turned OFF, work memory data is lost, but data written to the
EEPROM is saved.

7-15

7.6 inverter Constant Read Function (ICNS-RD)

lame of Fundio

Function

Function
De6nition

U0 Definition

Input

Output

ICNS-RD 3 -.

teads the inverter constants.
b e types and ranges of the inverter constants to be read can be designated.
~b&able inverters]
nverters connected via CP-213, CP-215, or CP-216.

CP-215=1
CP-216=4

4 ICIR-NO I I-REG I Line No.

Description

Inverter constant read execution command
Inverter constant read forced interruption command
Type oftransmission device

lo:
1
2 :
3

* : Indicates the UO designations at the CP-717.

5

Name
EXECUTE
ABORT
DEV-TYP

YO
Designation'

B-VAL
B-VAL
I-REG

ST-NO I-REG

CP-215: 1 to 8
CP-216: 1 to 8

Slave station No.

7. STANDARD SYSTEM FUNCTIONS

Configuration of Inverter Constant Read Execution Status (STATUS) I

(Note) : In the case of an inverter response ermr, the error codes &om the inverter are indicated in
bitO to bit7.
OlH(1) : function code error
02H(2) : reference No. error
03H(3) : Readout count error
Numbers in () are of decimal expressions.

Name
System resewed
Execution sequence error
Transmission parameter error
Designated type error
Designated No. error
Error in number (amount) of the
designated data
Transmission error
Inverter response error
Address input error

I Confiauration of the Data Readout I

C Inverter Constants
b-01 Acceleration time 1

Bit No.
bit0 to bit7

bit 8
bit 9
bit10
bit11
bit12

bit13
bit14
bit15

I User re&er 1

Remarks

The function is not executed.
The function is not executed.
The function is not executed.
The function is not executed.
The function is not executed.

The function is not executed.
The function is not executed.
The function is not executed.

p1
b-2s A0 optional output gain

7.7 CP-213 Initial Data Setting Function (ISET-213)

lame of Functio

Function

Fundion
Definition

UO Defintion

Input

output

ISET-213

jets the initial data for the inverter connected to the CP-213 line. A few scans are
,eq+ed until the completion of the process.

- - - -- -- CIR-NO

I,
* : Indicates the UO designation at the CP-717.

I

Description

CP-213 initial data setting command
CP-213 line No. (1 to 8)
Slave station No. (1 to 31)
Number of words of set data (1 to 127)
Head address of set data (MW, DW, #W)
CP-213 initial data setting in process
Completion of CP-213 initial data setting
Occurrence of error
Parameter error

UO
Designation*

B-VAL
I-REG
I-REG
I-REG

Address input
B-VAL
B-VAL
B-VAL
B-VAL

JO.

1
2
3
4
5
1
2
3
4

Name

EXECUTE
CIR-NO
STATION
WORD-CNT
DAT-ADR
BUSY
COMPLETE
S-ERROR
P-ERROR

Function
7. STANDARD SYSTEM FUNCTIONS

(MSG-SND)

MSG-SND

Sends a message to the called station which is on the line and which is designated b
the transmission device type. Supports a plurality of protocol types.
The execution command (EXECUTE) must be held until COMPLETE or ERR01
becomes ON.
[Transmission Devices] CP-215, CP-216, CP-217, CP-218, CP-2500, CP-2520
[Protocols] MEMOBUS, non-procedural, MELSEC, OMRON

r0.l Name

4 PRO-TYP t-
5 CIR-NO t-

i BUSY

I ERROR

YO
Designation'

B-VAL
B-VAL
I-REG

I-REG

I-REG

I-REG

iddress inpu~
B-VAL
B-VAL
B-VAL

Send message command
Send message forced interruption command
Type of transmission device

CP-215 = 1

CP-2520 = 7
Transmission protocol

** MEMOBUS = 1
non-procedural = 2

Line No.

CP-2520 = 1 to 8
Transmission buffer channel No.

CP-2520 = 1 to 15
Head address of set data (MW, DW, #W)
Message is he in^ sent. - - . - - - ...- - - -- - .
The sending of the message has been completed.
Occurrence of error -

* : Indicates the UO designation a t the CP-717. ** . . Designate the MEMOBUS protocol (= 1) if transmission is to be performed with the MELSEC
or OMRON procedure. Protocol conversion will be carried out at the transmission device (CP-
217, CP-218). Refer to (1) of 5.3.4, "OMRON Communication" or (2) of 5.3.4, "MELSEC
Communication" of the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details
on the protocol conversion specifications.

7-19

. . 7.8.1 Parameters . . .

(1) Process Result (PARAMOO)
The process result is output to the upper byte. The lower by& is for system analysis. - 0000 :In process (BUSY) - 1000 :End of process (COMPLETE)

8000 :Occurrence of error (ERROR)

[Error Classification] 1
81 00 : Function code error
The sending of an unused function code was attempted. Or, an unused function code war
received.

- 8200 : Address setting error
The data address, coil offset, input relay offset, input register offset, or holding registel
offset setting is out of range.
8300 : Data size error
The size of the sent or received data is out of range.
8400 : Line No. setting error
The line No. setting is out of range.
8500: Channel No. setting'error . .
The channel No. setting is out of range.
8600 : Station address error
The station No. setting is out of range.
8800 : Transmission unit error.
An error response was returned from the transmission unit. (Refer to (2) of 7.8.1.)
89nn: Device selection error - - - - . - -
A non-applicable device is selected.

7. STANDARD SYSTEM WNCTIONS

(2) Status (PARMOI)
Outputs the status of the transmission unit,
(a) Bit Assignment

REQUEST

ESULT

COMMAND

Code
1
2
3
8
9
C

- -

I 1 monitor time was exceeded.
7 I REC-NG I Data receive error (error detected by a program of a lower rank)

Symbol

U-SEND
U-REC
ABORT
M-SEND
M-REC
MR-SEND

:ode
1
2
3
4
5

6

(d) PARAMETER
One of the error codes of Table 7.2 is indicated if RESULT = 4(FMT_NG).
Otherwise, this indicates the address of the called station.

Meaning
Send generic message.
Receive generic message.
Forced interruption
Send MEMOBUS command ... completed upon receipt of response.
Receive MEMOBUS command ... accompanies sending of response.
Send MEMOBUS response.

Table 7.2 Error Codes

Symbol
SEND-OK
REC-OK
ABORT-OK
FM'LNG
S E e N G ,
or INIT-NG

RESET-NG,
or 0-RING-NG

(e) REQUEST
1 = Request
0 = Completion of receipt report

Meaning
Sending has been completed correctly.
Receiving has been completed correctly.
Completion of forced interruption
Parameter format error
Command sequence error
The token has not been received yet.
Not connected to a transmission system.
Reset state
Out-of-ring. The token could not be received even when the token

13) Called Station # (PARAM021 , ,
[CP-2151 '

1 to 64 : Message is sent to the designated station.
OOFFH : Message is sent to all stations (broadcasting).

[CP-2161
1 to 30 : ~ e s s a ~ e is sent the designated station (possible only.sen&g Gom the master. stat
SOH : Message is s e n t p the master station (possible only sending Gom a slave station)
Note : With CP-216;message transmission between slave stations is not possible.

[CP-2171
1 to 254: Message is sent to the station of designated device address.

[CP-2181
1 to 20 : Message is serit to the station of designated connection No.

[CP-25001
1 to 32 : Message is sent'to the designated station.

'

129 to 160 : Message is sent to the stations of designated group address (group transmiss
OOFFH: Message is sent to all stations (broadcasting).

[CP-25201 , .

1 to 64 : Messaee is sent.to the designated station.
OOFFH : ~ e s s a i e is sent to all stations (broadcasting).

~ o t e : Only MW (MB) can be used as the sendinglreceiviiig register during master operation. T
MB,'MW, IB, and IW registers canbe used respectively as the coil, holding register, iny
relay, and inputxegisters duiirig slave operation.

. .

7. STANDARD SYSTEM FUNCTIONS

(5) Data Address iPARAMO5\ . .
The set contenis will d i e r according to the function code as follows.
@I Request for readout fromiwrite-in to coil or relav: Set the head bit address of the data -. --. -.
@ Request for continuous readout frodwrite-in tda register: Set head word address of the data.
@ Request for discontinuous readout frodwrite-in to a register: Set head word address of the

7 . " 2 ' address table.
I

Fundion code

05H I Change status of single coil I 0 to65535 (0 to FFFFH) 10
06H Write into a single holding regism

..
I 0 to32767 (0 to7FTFH) 10

Data Address Setting Range

01H I Readmilstatus

02H I Read input relay status
03H I Read contents of hold register
04H 1 Read contents of input register

OOH I Unused 1 Invalid
- -

0 to65535 (Oto FFFFH) 10
0 to65535 (0 to FFFFH) 1 0
Oto32767 (Oto7FFFH) ;0
0 to 32767 (0 to 7FFFH) '0

UGH I Unused I Invalid
ODH I Diemntinuous readout of holding register (expanded) lot032767 (Oto7FFFH) I@
OEH 1 Discontinuous write into holding register (expanded) lot032767 (Oto7FFFH) I @

U'lH , Unused
08H ! hp-back t e s t

09H ! Read contents of holding register (expanded)
OAH I Read contents of input register (expanded)
OBH 1 Write into holding register (expanded)

OFH I Change status of a multiple coil lot065535 (OtoFFFFH) 10
10H I Write into a plurality of holding registers lorn32767 (Oto7FFFH) 10

Invalid
Invalid
Oto32767 (Oto7FFFH) 10
Oto32767 (Oto7FFFH) 10

(6) Data Size (PARAMOG)
Set the size (in number of bits or number of words) of the data that is requested for readout or
write-in. The setting range will differ according to the transmission module and the function code
to be used.

[CP-2151
I

-.
Oto32767 (Oto7FFFH) 10

I lhnrtinn ma.
Data Size Setting Range ---" "--

05H 1 Change status of single coil I Invalid
06H ;Write into a single holding register (Invalid
07H Unused 1 Invalid

01H I Read coil status
02H I Read lnput relay s~a tu s
03H Read contents of holding register
04H Read contents of input register

08H ' Loop-back test
-

I Invalid
09H !Read contents of holding 1 1 to 508 (1 to 01FCH)lnumber of words I 1 to 252 (1 to WFCH)/number of words

OOH I Unused Invalid 1 CP-215/CP-218/CP-2520

1 to 2000 (1 to 07DOH)lnumber of bits
1 to 2000 (1 to 07DOH)lnumber of blur
1 to 125 (1 to OO7DH)lnumber of words

1 to 125 (1 to 007DH)lnumber of words

CP-216lCP-217-CP-2500

I (expanded)
OC ;Unused I Invalid
OD I Discontinuous readout of I 1 to 508 (1 to 01FCH)lnumber ofwords I 1 to 252 (1 to WFCH)lnumber of words

I register (expanded)
OA I Read contents of input register

I (expanded)
OB I Write into holding register

I holding registers

1 to 508 (1 to 01FCH)Inumber of words

1 to 507 (1 to 01FBH)lnumber of words

I holding register (extended)
OE I Dismntinuous write into

I holding register (extended)
OFH I Change status of multiple coil

10H I Write into a plurality of

1 to 252 (1 to 0OFCH)Inumber of words

1 to 251 (1 to 00FBH)lnumber of words

1 to 254 (1 to 0OFEH)Inumber of words 1 to 126 (1 to 007EH)lnumber of words

1 to 800 (1 to 0320H)lnumber of bits

1 to 100 (1 to 0064H)lnumber of words

(7) Called CPU # (PARAMO7)
Set the called CPU No.
When the sending destination is CP-9200SH, set 1 or 2:
For other cases, set 0.

(8) Coil Offset (PARAMOB)
Set the offset word address of the coil.
This is valid in the case of function codes OlH, 05H, and OFH.

(9) Input Relay Oflset (PARAMO~)
Set the offset word address of the input relay.
This is valid in the case of function code 02H.

(10) lnput Register Offset (PARAM10)
Set the offset word address of the input register.
This is valid in the case of function codes 04H and OAH.

(1 1) Holding Register Offset (PARAM1 1)
Set the offset word address of the holding register.
This 1s valid m the case of function codes 03H, 06H, 09H, OBH, ODH, OEH, and 10H

(12) For System Use (PARAM12)
The channel No. being used is stored. Make sure that this will be set to OOOOH by the us
program on the &st scan after turning on the power. This parameter must not be changed by t
user program thereafter since this parameter will then be used by the system.

(13) ~ e l a t i o n s k ~ between the Data Address, Size and Offset

I
Data address ,+

1 MWaxxXx - .-
t ,' . - . . . '

t
Data SUI
A

A = sending side offset address
B = sendirig side data address
C = receiving side offset address

(14) When transmission protocol is set to non-procedural
The settings of PARAM04 PARAMO8, P M O S , and PARAMlO are not necessary. Transmissio
enabled register is only MW.

7. STANDARD SYSTEM FUNCTIONS
Inputs

(1) EXECUTE (Send Message Execution Command)
When this command becomes "ON", the message is sent.
This must be held until COMPLETE (completion of process) or ERROR (occurrence of error) be-
comes "ON".

(2) ABORT (Send Message Forced Interruption Command)
This command forcibly interrupts the sending of the message. This has priority over EXECUTE
(send message execution command).

(3) DEV-TYP (Transmission Device Type)
Designates transmission device type.

(4) PRO-TYP (Transmission Protocol)
Designates transmission protocol. When transmitting with MELSEC or OMRON procedures, specify
MEMOBUS protocol (=I). Protocol is converted by the transmission device (CP-217, CP-218).

MEMOBUS: Setting = 1
Non-procedural: Setting = 2

For details of protocol conversion specifications, refer to the following manuals.
Control Pack CP-9200SH User's Manual (SIE-C879-40.1)

5.3.4 (1) "OMRON communications"
5.3.4 (2) "MELSEC communications"
Note: In non-procedural transmission, a response is not received from the other station.

CIR-NO (Circuit No.)
Designate the Circuit No.

CH-NO (Channel No.)
Designate the channel No. of the transmission
as not to be duplicated on a single line.

Channel No.
CP-215 1 to 13
CP-216
CP-217
CP-218 1 to 10

unit. However, the channel number should be set so

(7) PARAM (Set Data Head Address)
The head address of the set data is designated. For details of the set data refer to 7.8.1. 'Farameters."

(1) BUSY (In Process)
Indicates that the process is being executed. Keep EXECUTE set to "ON".

(2) COMPLETE (Completion of Process)
Becomes "ON" for only 1 scan upon normal completion.

(3) ERROR (Occurrence of Error)
Becomes "ON" for only 1 scan upon occurrence of error.
Refer to PARAMOO (7.8.1 (1)) and PARAM01 (7.8.1 (2)) concerning the cause.

7. STANDARD SYSTEM FUNCTIONS

Limitations Arising from Other Companies' Communications Protocols with the CP-2171F

(1) When Making a Dedicated Protocol Connection Link with the MELSEC Computer
W Communication is possible with type 1 protocol (response possible only for full-dual connec-

tion).

W With a MSG-SND function, receiving and sending with responce of ACPU common commands
to and from the MELSEC sequencer are possible, but commands that may be used are limited
(read ouffwrite in of device memory, wrap test).

W Designate MEMOBUS protocol (=I) for input of the PRO-TYP (transmission protocol) of the
MSG-SND function. On the UO definition screen for the transmission port, if MELSEC master
is set, conversion to the corresponding MELSEC format is performed by the CP-217IF unit.
Change designated parameters a t this time to parameters of corresponding MEMOBUS proce-
dures.
Refer to the following manuals for correspondence of MELSEC commands and MEMOBUS
function codes, and correspondence of registers for sending and receiving and device addresses
on the MELSEC side.

Control Pack CP-9200SH User's Manual (SIE-C879-40.1)
5.3.4 (2) "MELSEC communications"

W In MEMOBUS -+ MELSEC format conversion, due to MELSEC protocol characteristic restrie-
tions or MELSEC sequencer type characteristic restrictions, limits in addition to number of
read out words of a register and other MEMOBUS procedures arise, so carefully read manuals
related to connected equipment before using.
Furthermore be sure to refer to the manual related to MELSEC computer link dedicated proto-
col type 1 commands.

(2) When Making an OMRON Upward Linking Mode (SYSWAY) Connection
W With a MSG-SND function, sending and receiving with response of commands to and from the

OMRON sequencer are possible, but commands that may be used are limited (110 relay/DM
read ouffwrite, wrap test).

W Designate MEMOBUS protocol (=I) for input of the PRO-TYP (transmission protocol) of the
MSG-SND function. On the UO definition screen for the transmission port, if OMRON master
is set, conversion to the corresponding OMRON format is performed by the CP-217IF unit.
Change designated parameters a t this time to parameters of corresponding MEMOBUS pmce-
dures.
Refer to the following manuals for correspondence of OMRON commands and MEMOBUS func-
tion codes, and regarding correspondenke of registers for sending and receiving and the relav . - -
(CH)/DM area on the 0-ON side.
- Control Pack CP-9200SH User's Manual (SIE-C879-40.1)

5.3.4 (1) "OMRON communicationsn

In MEMOBUS - OMRON format conversion, due to OMRON vrotocol characteristic restric-
tions or OMRON sequencer type characteristicrestrictions, limits in addition to number of read
out words of a register and other MEMOBUS procedures arise, so carefully read manuals re-
lated to connected equipment before using.
Furthermore be sure to refer to the manual related to OMRON communications procedures.

W This corresponds to transmission procedures by multi-programs stipulated in OMRON proce-
dures, but set the upper limit for the number of words that can be accessed with one instruction
to 125 words for DM register read out, and 100 words for write-in (restricted conditions of
MEMOBUS procedures).

7.8.5 Program Example

(Set the system register to 0 on the first scan.)

1 S B o P p o o 3

(Start on e v 1 second.) (Completion) ' (Error) (1-second delay for rise) (Command)
DBO0020l

COYPLETE
(Transmission device type)

ERROR

fhmn+ion buffer channel No.)

(Pass counter)
[I- INC DV000241 j

(Error counter)
INC DF00025

(Store process result.)
I- DWOOOOO .;

(LINK status) ,
I- Drooool

DEND

7. STANDARD SYSTEM FUNCTIONS

Function (MSG-RCV)

MSG-RCV

Receives a message from a calking station which is on the line and which is designate(
~y the transmission device type. Supports a plurality of protocol types.
l'he execution command (EXECUTE) must be held until COMPLETE or ERROI
>ecomes ON.
Transmission Devices] CP-215, CP-216, CP-217, CP-218, CP-2500, CP-2520
Protocols] MEMOBUS, non-procedural, MELSEC, OMRON

MSG-RCV m

ABORT
I-REG

I

PRO-TYP I-REG

:OMPLETE B-VAL
B-VAL

Description

Receive message command
Receive message forced interruption command
Type of transmission devlce

CP-215 = 1 ~ -

CP-216 = 4
CP-217 = 5
CP-218 = 6
CP-2500 = 3
CP-2520 = 7

Transmission protocol
** MEMOBUS = 1
non-procedural = 2

Line No.

CP-2520 = 1 to 8
Transmission buffer channel No.

CP-215 = 1 to1 3 - - - . . - -
CP-216 = 1 to 3
CP-217 = 1
CP-218 = 1 to 10
CP-2500 = 1 to 14
CP-2520 = 1 to 15

Head address of set data (MW, DW, #W)
Message is being received.
l'he receiving of the message has been completed.
3ccurrence of error J

: Indicates the UO designation at the CP-717. ** . . Designate the MEMOBUS protocol (= 1) if transmission is to be performed with the MELSEC
or OMRON procedure. Protocol conversion will be carried out at the transmission device (CP-
217, CP-218). Refer to (1) of 5.3.4, "OMRON Communication" or (2) of 5.3.4, "MELSEC
Communication" of the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details
on the protocol conversion specifications.

1 'When CP-218 is set for D E V - W , IN.

No.

00
01

,
7.9.1 Parameters

(1) Process Result (PARAMOO)
The process result is output to the upper byte. The lower byte is for system analysis.

0000 : In process (BUSY)
10m : End of pmcess (COMPLETE)
8 000 : Occurrence of error (ERROR)

' 02 OUT* Calling station # Calling station # * Calling connection # in the case of I INIOUT

OUT
OUT

[Error Classification] , - 81 00 : Function code error
An unused fundion code was received.
82 00 : Address Setthig error
The data address, coil offset, input relay offset, input register offset, or holding regist
offset setting is out of range.
8300 : Data size error
The iize of the sent or received data is out of range:
8400 : Line No. setting error
The line No. setting is out of range.
8500 : Channel No. setting error
The channel No: setting is out of range.
8600 : Station address error
The station No. setting is out of range.
8800 : Transmission unit error.
An ei-ror response was returned from the transmission unit. (Refer to (2) of 7.9.1.)
8900 : Device selection error
A non-applicable device is selected.

 ema arks Contents

MEMOBUS
Process result
Status

Process result

Process result
Status

7. STANDARD SYSTEM FUNCTIONS

(2) Status (PARAMOI)
Outputs the status of the transmission unit. See 7.8.1 (2), "Status (FARAMOl)" for details.

(3) Calling Station # (PARAM02)
[CP-215, CP-216, CP-217, CP-2500, CP-25201

The station number of sending side is output.
[CP-2181

1 to 20: The calling station connection number is set.

(4) Function Code (PARAM04)
Outputs the MEMOBUS function code received.

(X : cannot be output, 0 : can be output)

Note : The MB, MW, IB, and IW registers can be used respectively as the coil, holding register,
input relay, and input registers during slave operation.

(5) Data Address (PARAMOB)
The data address requested by the sending side is output.

(6) Data Size (PARAMOG)
The data size (number of bits or number of words) of the requested read or write is output.

(7) Calling CPU # (PARAM07)
The calling CPU No. is output.
When the sending source is CP-9200SH, 1 or 2 is output. For other cases, 0 is output.

(8) Coil Offset (PARAM08)
Set the offset word address of the coil.
This is valid in the case of function codes OlH, 05H, and OFH.

(9) Input Relay Offset (PARAMO9)
Set the offset word address of the input relay.
This is valid in the case of function code 02H.

(10) Input Register Offset (PARAM1 0)
Set the offset word address of the input register.
This is valid in the case of function codes 04H and OAH.

(11) Holding Register Offset (PARAM11)
Set the offset word address of the hold register.
This is valid in the case of function codes 03H, 06H, 09H, OBH, ODH, OEH, and 10H.

(12) Write-in Range LO (PARAMIZ), Write-in Range HI (PARAM13)
Set the write allowable range for the request for write-in. A request which is outside of this ran
will cause an error.
This is valid in the case of function code OBH, OEH, OFH, and 10H.
0 5 Write-in Range LO S Write-in Range HI S Maximum value of MW Address

(13) For System Use (PARAM14)
The channel No. beine used is stored. Make sure that this will be set to OOOOH bv the us -
program on the first scan aft& turning on the power. Thik k l u e must not be changed iy the ur
program thereafter since this parameter will then be used by the system.

. .
(14) When Non-procedural is set for Transmission Protocol

PARAM04 has no function. The settings of PARAMOS, PARAMO9, and PARAMlO are n
necessary. The message receivable register is only MW.

7.92 Inputs

(1) EXECUTE (Receive Message Execution Command)
'

When this command becomes "ON", the message is received.
This must be held until COMPLETE(comp1etion of process) or ERROR (occurrence of err(
becomes "ON".

(2) ABORT (Receive Message Forced Interruption Command)
This command forcibly interrupts the receiving of the message. This has priority over EXECU?
(receive me$sage execution command).

(3) DEV-TYP Fransmission Device Type)
Designates transmission device type.

Transmission Device Type
1

7. STANDARD SYSTEM FUNCTIONS

(4) PRO-TYP (Transmission Protocol)
Designates transmission protocol. When transmitting with MELSEC or OMRON procedures,
designate MEMOBUS protocol (=I). Protocol is converted by the transmission device (CP-217,
CP-218).

M ~ O B U S : Setting = 1
Non-procedural: Setting = 2

For details of protocol conversion specifications, refer to the following manuals.
Control Pack CP-9200SH User's Manual (SIE-C879-40.1)

5.3.4 (1) "OMRON communicationsn
5.3.4 (2) 'MELSEC communications"

Note: In non-procedural transmission, a response is not sent t o the other station,

(5) CIR-NO (Line No.)
Designate the Circuit No.

(6) CH-NO (Channel No.)
Designate the channel No. of the transmission unit. Hc
so as not to be duplicated on a single line.

twever, the (n should be set

(7) PARAM (Setting Data Head Address)
The head address of the set data is designated. For details of the setting data, refer to 7.9.1.

. "Parameters."

Outputs

(1) Busy (In Process)
Indicates that the process is being executed. Keep EXECUTE set to "ON",

(2) COMPLETE (Completion of Process)
Becomes "ON" for only 1 scan upon normal completion.

(3) ERROR (Occurrence of Error)
Becomes "ON" for only 1 scan upon occurrence of error.
Refer to PARAMOO (7.8.1 (1)) and PARAMOl (7.8.1 (2)) concerning the cause,

7.9.4 Limitations Arising from Other Companies' Communications Protocols with the CP-2171F

(1). When Making a ~edicated~rotocol Connection Link with the MELSEC Computer
Communication is possible with type 1 protocol (response possible only for full-dual connectior

With a M~G-RCV function, receiving and sending with response of ACPU common comman
to and from the MELSEC master device are possible, but commands that may be used a
limited (read outlwrite in of device memory, wrap test).

Designate MEMOBUS protocol (= 1) by input of the PRO-TYP (transmission protocol) of tl
.MSG-RCV function. On the I/0 definition screen for the transmission port, if MELSEC slave
set, conver'sion to the corresponding MELSEC format is performed by the CP-217IF unit.
Change designated parameters to parameters of corresponding MEMOBUS procedures. Ref
to the following manuals for correspondence of MELSEC commands and MEMOBUS functi~
codes, correspondence of registers forsending and receiving and device addresses on tl
MELSEC side.

Control Pack CP-9200SH User's Manual (~1~-~879-&.1)
5.3.4 (2) "MELSEC communications"

(2) When Making an OMRON Upward Linking Mode (SYSWAY) Connection
W i t h a MSG-RCV function, receiving and sending with responce of commands to and from tl

OMRON master device are possible, but commands that may be used are limited (y0 rela
DM read outhrite, wrap test).

~ e s i ~ n a & MEMOBUS protocol (= 1) for input of the PRO-TYP (transmission protocol) of tl
MSG-RCV function. On the I/O definition screen for the transmission port, if OMRON slave
set. conversion to the corresponding OMRON format is performed bythe CP-217IF unit.
change designated parame& to parameters of corresponding MEMOBUS procedures.
Refer to the following manuals for correspondence of OMRON commands and MEMOBl
function codes, regarding correspondence of registers for sending and receiving and the rel;
(CH)IDM area on the OMRON side.

Control Pack CP-9200SH User's Manual (SIE-C879-40.1) . .

5.3.4 (1) "OMRON communications"

.This eyesponds to transmission pmedures by multi-programs stipulated in OMRON proc
dures. but set the umer limit for the number of words that cad be accessed with one instn LC

tion & 125 words &DM register read out, and 100 words for writing (restricted conditions c
MEMOBUS procedures).

7. STANDARD SYSTEM FUNCTIONS

Program Example

(Set the system register to 0 on the first scan.)

I n o o w o a
(Write-in ringe LO)
* DW00012

(Write-in range HI)
DW00013

(System Function)

(Command: Always ON)
SB000004 I MSGRCV

---I t------ EXECUTE I BUSY
(Forced interruption)

DB000208
--i +]ABORT ' . COMPLET

(Transmission protocol)
00001 =====> PRO-TYP

(Line No.)
0 0 0 0 ~ =======> (CIR-No

(Parameter address)

(Pass counter)
[k- INC DW000241

(Error counter)
INC DW00025

(Store process result)
1- DWOOOOO

(LINK status)
k DWOOOOl

(In execution)

DB000211

IEND

DEND

7.10 Counter Function (COUNTER)

Function

Function
Definition

I/0 Definition

Input

output

COUNTER

Increments or decrements the current value when the count upldown command (UP-
CMD, DOWN-CMD) changes from OFF to ON.
When the counter reset command (RESET) becomes ON, the current counter value is
set to 0. Also, the current counter value and the set value are compared and the
:omparison result is output.
* The current value will not be incremented neither decremented if a counter error

(current value > set value) occurs.

YO Description 'o. Name Designation*

1 UP-CMD B-VAL Count up command (OFF -. ON) Data area for

2 DOWN-CMD B-VAL Count down command (OFF + ON)
m-*r pmQss

1: Set value
3 RESET B-VAL Counter reset command 2: Current value
4 ' CNT-DATA Address input Head address of data area for counter 3: Work flag

process @fW or DW register)
1 CNT-UP B-VAL Becomes ON when current counter value = set value:

2 CNT-ZERO B-VAL Becomes ON when current counter value = 0.

3 , CNT-ERR B-VAL Becomes ON when current counter value > set value.

*: Indicates the:UO designation a t the CP-717.

FINFOUT

This is a first-in first-out type block data transfer function. The FIFO data table is
composed of a 4-word header part and a data buffer. 3 words of the header part (data
size, input size, output size) must be set before this function is referenced.

When the data input command (IN-CMD) becomes ON, the designated number oj
data is sequentially stored from the designated input data area to the data ares oi
the FIFO table.
When the data output command (OUT-CMD) becomes ON, the designated num.
ber of data are transferred from the head of the data area of the FIFO table to the
designated output data area. - When the reset command (RESET) becomes ON, the number (amount) of data
stored is set to zero and the FIFO table empty output (TBL-EMF') becomes ON.
If "size of available space for data (empty size) < input size" or if "data size <
output size," the FIFO table error (TBLERR) becomes ON.

7. STANDARD SYSTEM FUNCTIONS

-11

-

U"

ne I Desimation* I Description - --- .- - -

-
FINFWT

IN-caul lBL-FULL

Om-W lBL-EMP

RESET lBL-ERR

F I W T B L
IN-DATA
OUT-DATA

lo.

First-in

kame of Function

Function

Function
Definition

UO Definition

Input

Output

* : Indicates

I , ,n I

Nan

(B-VAL 1 Reset command 0 : data size
1 : input size

1

2
3
4

First-out Function (FINFOUT)
-
-
I

I

f
F

!

I

-

h

IN-CMU (n-VAL I Data input command (IN-CMD) FIFO ~ ~ b l ~

5

6

-

OUT-CMD 1B-VAL 1 Data output command (OUT-CMD) Codguration

IN-DATA

OUT-DATA

-
-
- RESET

FIFO-TBL 1 Address input! Head address of FIFO ta

-

Address input

Address input

-

-

(MW or DW address)
Head address of input data
(MW or DW address)
Head address of output data

,A

2 : output size
3 : number of

data store?
4 : data

1
2

RilW or DW address)
FIFO table is full.
FIFO table is empty.

I

FIFO table error - 3

TBL-FULL
TBL-EMP

the UO Designation at the CP-717.

B-VAL
B-VAL

TBL-ERR B-VAL

APPENDIX

APPENDIX

The contents of Appendix are as follows:

Appendix A: Types of Instruction Words

Appendix B: List of Instructions
Appendix C: Differences on Programming between

CP-9200H and CP-9200SH

The data type (bit type, integer type, double-length

integer type, real number type) that can be used will
differ for each instruction. Refer to Chapter 4 "BASIC
INSTRUCTIONS" for details.

A Types of Instruction Words

Type of Instruction Word I Instruction Words
Program control instruction I SEE FOR WHLE ONIOFF IFONAFOFF

I ELSE END FSTART FIIj FOUT COMMENT
XCALL

I

Logical operationinstruction 1 A v
Numericaloperationinstrudionl t IF + - ++ - - x +

Direct UO instruction
Relay circuit instruction .

INS OUTS
+ + + -+ -+ +' + + --F +
-+ *I- -0-l -+SH - I R H 7 7

-

Numerical conversion instruction
&nerical comparison instruction
Data operation instruction

INC-DEC MOD REM WD TMSUB SPEND
INV COM ABS BIN BCD PARITY ASCII BINASC ASCBIN
< 5 = # z > RCHK
ROTL ROTR MOVB MOVW XCHG S E W

Basic function instruction
DDC instruction

Table data ooeration instruction

IITRC-RD MSG-SND MSG-RCV ISET-213 ICNS-WR /

BEXTD BPRESS BSRCH SORT SHFTL SHFTR
COPYW BSWAP
SQRT SIN COS TAN ASIN ACOS ATAN EXP LN LOG
DZA DZB LIMIT PI PD PLD LAG LLAG
FGN IFGN LAU SLAU PWM
TBLBR TBLBW TBLSRL TBLSRC TBLCL TBLMV

SFC instruction
System function

I ICNS-RD I

QTBLR QTBLRI QTBLW QTBLWI QTBLCL
SFC $ + ABOX SBOX AEND SFCSTEP
COUNTER FINFOUT TRACE DTRC-RD FI'RC-RD

APPENDIX

of Instructions

Name
~ -

3EE child drawin

FOR statement

WHILE statemer

[F statement

END

COMMENT

I

SEE 1 0

WHILE

ONIOFF

WEND

ELSE t
FEND
WEND
IEND
DEND

Description
-

Designate the No. of the child or
grandchild drawing to be
referenced after "SEE"
SEE H01

Loop execution statement - 1
F O R V = a t o b b y c
V : arbitrary integer register

May specify as I or J.
a, b, c : May specify an arbitrary

integer. (b > a > 0, c > 0)
FEND: END of FOR instruction

Loop execution statement - 2

WEND : END of WHILE-ON OFF
instruction

Conditional execution statement

IEND: END of IFONIIFOFF
instruction

The exclusive END instruction is
indicated automatically by the
CP-717 for each of the above
statements. DEND is indicated
for the END of a drawing. Only
"END" is accepted as an input
from the CP-717; FEND, WEND,
etc. will not be accepted.

Character strings enclosed in
" " will be handled as a
comment.

Vote) 0 mark in the "[] Instruction" column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction . I

-
Expansion
program
execution
instruction

Input
instruction
(interruptio
prohibited)

D i UO

Output
instruction
(interruptio
prohibited)

FOUT

XCALL

INS

OUTS

-

Description

h c t i o n referencing instruction

h c t i o n input instruction
Stores input data from the designated
input register into the function input
register.

Iesignated input register .

B-VAL : CPU internal register (B register)
I-VAL : CPU internal register (A register)
L-VAL : CPU internal register (A register)
F-VAL : CPU internal register (F register)
I-REG : arbitrary integer register
L-REG : arbitrary double-length integer

register . ;

F-REG : arbitrary real number register
iddress input

Function output instruction . .

Stores output data from the function
output register to the designated output
register.

Designated output register
B-VAL : CPU internal register (B register)
I-VAL : CPU internal register (A register:
LVAL : CPU internal register (A register:
F-VAL : CPU internal register (F register)
I-REG : arbitrary integer register
L-REG : arbitrary double-length integer

register
F-REG : arbitrary real number register

Instruction for referencing an expansion
program".

INS MA00100 ------
Data input and storage are executed with
interruption prohibited. .

OUTS MA00100 4
The setting and output of data are execute1
with interruption prohibited.

-
! Model -
CP-920 -
0
-
0

--
0

: There are four types of expansion programs which reference this instruction: constant table (M register
UO conversion table, interlock table, and part composition table.

(Note) 0 mark in the "[] Instruction " column means that "[1" (conditional execution according to the va
of the immediately preceding B register) can be added to the instruction .

(continued)

Type

-

-

-

-

elay
-

ircuit
nstructions

-

-

APPENDIX

Name Symbol Description Device ~ o d e l

-

No limit in the serial circuit.
Bit type designation of any register as
a relay number is possible
(MBOOOllA).

No limit in the serial circuit.
Bit type designation of any register as
a relay number is possible
(MBOOOllA).

NO contact

NC contact

No limit in the serial circuit.
Bit type designation of any register as
a relay number is possible
(MB0001lA).

Rise pulse

- -

No limit in the serial circuit.
Bit type designation of any register as
a relay number is possible
(MBOOOllA).

Fall pulse

On-delay timer
(Unit of measure- 4' F
ment: 10 ms)

Off-delay timer
(Unit of measure- -I F
ment: 10 ms)

On-delay timer
(Unit of measure- 4' b

Set value: count register

-I' F
Set value: any register,
constant (setting unit: 10ms)
Count register : M or D register

Set value: count register

4' F ment: 1s)

Off-delay timer I Set value: any register,
constant (setting unit: Is)
Count register : M or D register

MBOOOOOO
I- Mw00200= OOOOl -0---

MBOOOOOO L C--

(Unit of m a r e - '+
ment: 1s)

Coil I - . ,
IFON

MBOOOOOO MBOOOOlO
H 'Sk- . . ~ ~

By turning MBOOOOOO "ON,"
MBOOOOlO turns "ON." Subsequently,
even if MBOOOOOO turns "OFF," it
stays "ON."

MB000020 MBOOOOlO
H 'R+

By turning MB000020 "ON,"
MBOOOOlO turns "OFF." Subsequently,
even if MB000020 turns "OFF," it
stays "OFF."

A branching or converging indication
can be attached to any of the above
relay type instructions.

Set coil I 4sH

Reset coil I 4RH

Branchind 1 -
convergence
point instruction I TT- I - I I I

Note) 0 mark in the "[] Instruction" column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

Name
P

Symbol -
A

Description

Integer type designation of any register
or constant is possible.

Integer type designation of any register
or constant is possible. 3R

Exclusive OR
Integer type designation of any register
or constant is possible.

Integer type entry
Starts integer type operation.

I- MW0028M0100 MW00220
-

Real number t h e
:ntry

Starts real number type operation.

IF MW00280+00100 3 MW00220

Stores operation result in designated
register. Store

Ordinary numerical addition
(with operation error).'
k MW0028M0100 2MW00220

All registers and constants can be
designated

Add

Ordinary numerical subtraction
(with operation error).'
k MWO0280-00100 *Mw00220

All registers and constants can
be designated.

Closed numerical addition
(without operation error).

32768+1=-32768
0 + 32767 + -32768 + 0

Subtract

Extended add

Closed numerical subtraction
(without operation error).

-32768-1=32767
0 -. -32768 + 32767 -+ 0

In the case of integer type and double-
length integer type, use X and + in
combination.

Extended subtract

Multiply

Divide

*: On the CP-9200H, an operation error will not occur with double-length operations. On the CP-9200S1
operation error will occur with double-length operations.

(Note) 0 mark in the "I] Instruction " column means that "[1" (conditional execution according to the v a l ~
of the immediately preceding B register) can be added to the instruction .

Symbol

INC

DEC

MOD

REM

SPEND

nstmction Description
--

0 Adds 1 to the designated register.
" INC MWOOlOO

IfMW00100= 99, the operation result
= 100.

0 Subtracts 1 from the designated
register.
DEC MWOOlOO
IfMW00100= 99, the operation result
= 98.

0 MWOOlOO X 01000 t 00121
MOD 3MWOO101
In this example, the remainder of
division is taken out.

0 11- MF00200 REM 1.5
3MF00202

In this example, the remainder of
division is taken out.

0 Addition of hrdminlsec
TMADD MW00000, MWOOlOO

0 Subtraction of hrdminlsec
ITMSUB MWOOOOO, MWOOlW

Finds elapsed time between two times.
(Difference in yr/mdday/hr/min/sec in
total number of seconds.)
SPEND MW00000, MWOOlOO

APPENDIX

Time addition

Device Model
H CP.9200H

0

0

0

0

(continu

Type -

Numerical
Conversion
Instruction

Name

Sign inversion

Complement
of 1

Absolute value
conversion :

Binary
conversion ;

BCD conversion

Parity
conversion

ASCII
conversion 1

ASCII
conversion 2

conversion 3

Symbol

' COM

, ABs'

BIN

BCD

PARITY

BINASC

I I
nstruction

I-MWOOlOO BCD
IfMW00100= 1234 (decimal), the
operation result = 1234H
(hexadecimal).

Calculates the number of binary
expression bits that are ON (= 1).
I- MWOOlOO PARITY

If MW00100= FOFOH,
the operation result = 8.

0

0

'0

0

Description
Devic

CP-9200s)

I-MWOOlOO INV
If MW00100= 99, the operation result
= -99.

I-MW00100 COM
IfMWOOlOO=FFFFH, the operation
result=0000H

~MWOOlOO ABS
If MW00100=-99, the operation
result=99

I-MW00100 BIN
IfMW00100=1234H (hexadecimal),
the operation result = 01234 (decimal).

0

0

(Note) 0 mark in the "[] Instruction " column means that "[1" (conditional execution according to the va
of the immediately preceding B register) can be added to the instruction .

0

0

0

0

The designated character string is
converted to ASCII code and
substituted in the register.
ASCII MW00200 "ABCDEFG"

Sixteen-bit binary data is converted to
four-digit hexadecimal ASCII code.
BINASC MWOOlOO

0 The numerical value indicated by a
four-digit hexadecimal ASCII code is
converted to 16-bit binary data.
ASCBIN MWOOlOO

Symbol -
<

Name

ON or OFF is left in the B reeister as I 0 I 0

Description

-
a result of the comparison instruction.

MBOOOOlO
k MW00000<10000 --0--1

Device Model
CP.9200SH I CP-92001

I MBOOOOlO 1 0 1 0

- P

>

RCHK

ROTL

Range check

Bit rotation (L)
(left rotation)

Checks whether the value in the A
register is in range or not.

Lower Upper
Limit Limit

k MW00100 RCHK -1000, 1000
If it is in range B register turns ON, if
out of range, OFF.

Bit-ad& Count Width
ROTL MBOOlOOA - N = 1 W = 20

Bit rotation (R)
(right rotation)

0

0

ROTR Bit-addr Count Width / 0 I
ROTR MBOOlOOA - N = 1 W = 20

Bit transfer MOVB Source Desti. Width I 0 I
MOVB MBOOlOOA -MB00200A W = 20

Word transfer MOVW Source t i . W i L 1 0 7
MOVW MWOOlOO - MW00200 W = 20

XCHG Source1 Source2 Width I 0 I 0
XCHG MWOOlOO - MW00200 W = 20 ta

eration
;huetiom

Table
initialization

Byte -+

word developmenl

SETW

BEXTD

Word -+

byte compression

Desti. Data. Width
SETW MW00200 - D = 00000 W = 20

The binary data string stored in the
word form register area is developed a
byte a t a time into words.
BEXTD MWOOlOO to MW00200
B = 10

BPRESS

0

0

(Note) 0 mark in the "[] Instruction "column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

The lower byte only of the word data
stored in the word form register area
are gathered into a byte string.
BPRESS MWOOlOO to MW00200
B= 10

0

(continued)

Type I Name

Data search ,

1 ~ c s h i f t left

1strUctions
Bit shift right

Word copy

Symbol -
BSRCH

SORT

BSWAP

Description

A search is made, within the
designated register range, for the
position of data which match the .

stipulated data.
BSRCH MWOOOOO W = 20 D = 100
R = MW00100 .

A sort is performed on registers within
the designated register range.
SORT MWOOOOO W = 100

The designated bit strings are shifted
to the left.
SHFl'L MBOOlOOA N = 1 W = 20

The designated bit strings are shifted
to the right.
SHFTR MBOOlOOA N = 1 W = 20

The designated register range is
copied. Even if there is overlap
between the copy destination and copy
source, the copy will be correctly
performed.
COPYW MWo0100 + MW00200 W =
20

The upper and lower bytes of the
designated word variable are
swapped.
BSWAP MWOOlOO

(Note) 0 mark in the "[] Instruction " column means that "[1" (conditional execution according to the va
of the immediately preceding B register) can be added to the instruction .

APPENDIX

e / Name / Symbol

Square root SQRT

Sine t---F
Cosine

Tangent

Arc cosine I
Arc tangent

Exponent

1 Natural log I t---f~ Common log

Description

0 Taking the square root of a negative
number will result in the square root
of the absolute value multiplied by -1.
Il-MF00100 SQRT

0 Input = in degrees
Il-MFOOlOO SIN

0 Input = in degrees
Il-MFO0100 SIN

0 Input = in degrees
Il-MF00100 TAN

Il-MFO0100 ACOS

Device Model

Vhen using a basic function instruction with integer type data, scaling is necessary. For details, refer to
Zhapter 4 "BASIC INSTRUCTIONS".

'ote) 0 mark in the "[] Instruction " column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

Dead zone A * DZA . I 0 I I- MW00100 DZA 00100 ' I 0

, 1 Dead zone B '
Upperflower limit

1 0 ' DZB - 1: . .O I I-MW00100 DZB 00100

LIMIT 1 ' 0 I I-MW00100 LIMIT -00100 00100 I 0

PD control w
PID control

First-order lag LAG 1 0 1 &WOO100 LAG MA00200 1 0

Phase-lead-lag

Fundion
generator

Inverse function
generator

--

FGN I 0 1 !-MWOO100 FGN MA00200

IFGN 0 b MWOOlOO IFGN MA00200 0

Linear acceleratoi 0 I- MWOOlOO LAU MA00200 I I
Linear acceleratoi

Ivnit2
MWOOlOO SLAU MA00200

Pulse width
modulation r

I mote) 0 mark in the "[] Instruction " column means that "[1" (conditional execution according to the val
- of the immediately preceding B register) can be added to the instruction . .

APPENDIX

le Data
!ration
mct10~

Name

Block read

Block write

Row search
(vertical)

Column search
(horizontal)

Block transfer
between tables

Cue table read
(pointer
stationary)

Cue table read
(pointer advance$

Cue table write
(pointer
stationary)

Cue table write
(pointer advance6

Clear cue pointer

0 TBLBW TBL1, MA00000, MA00100 T B m w I I
0 TBLSRL TBL1, MA00000, MAOOlOO TBuRLI I

TBLSRC 0 TBLSRC TBL1, MA00000, MAOO~OC

0 TBLMV TBL1, .TBL2, MAOOOOO TB-l I
QTBLR 0 QTBLR TBL1, MA00000, MA00100

QTBLRI 1 0 I QTBLRI . TBLI. MAOOOOO, MA00100

QTBLW 0 QTBLW TBL1, MA00000, MAOOlOO

QTBLWI 0 QTBLWI TBL1, MA00000, MA0010(

lote) 0 mark in the "[] Instruction " column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

Symbol

SFC execution SFC

NO contact
transition
judgment

NC contact
transition
judgment

Timer transition
judgment

Adion box I ABOX

End action box
!

Branching1
convergence point
instruction s

SFC step entry

AEND

--

SFCSTEI

Description

SFC
EXECUTE OUT

MA00000

Designation of transition condition
$ IBOOlOA (Cannot modify with a subscript.)

Designation of transition condition
MB0012B (Cannot modifg with a subscript.)

Transition timer set value
+ 10.00 (Cannot modify with a subscript.)

ABOX S10: The corresponding
program is executed on each scan
after transition to step box S10 anc
until transition to the next step.

SBOX S11: The corresponding
program is executed just once upon
transition to step box S11.

End of SFC action box.

Designation of branching point,
convergence point, and convergence
connection of SFC.

SFCSTEP STEP name + DWOOOOC
Store system STEP No. of designated
STEP in the A register.

Device Mode

(Note) 0 mark in the "[,] Instruction " column means that "[1" (conditional execution according to the vz
of the immediately preceding B register) can be added to the instruction .

APPENDIX

ontinued)

Name Symbol Description

Upldown counter Counter

First-in first-out FINFOUT First-in first-out function

Trace function TRACE" Write-in of trace data into the data
trace memory.

Data trace read
function

Readout of data from data trace
memory to user memory

Failure trace
read function

Inverter trace
read function

FTRC-RD
-

Readout of data from failure trace
memory to user memory.

ITRC-RD Readout of data from inverter trace
memory to user memory.

Send message
function

Receive
message
function

Send CP-215lCP-216/CP-217/CP-218/
CP-2500-message.

Receive CP-215/CP-216/CP-217/CP-
218lCP2500 message.

Inverter
constant write
function

ICNS-WR Applies to the inverter connected to
CP-215 or CP-216.

Inverter
constant read
function

ICNS-RD Applies to the inverter connected to
CP-215 or CP-216.

CP-213 initial
data setting

Sets the initial data for the inverter
connected to the CP-213 line.

L

l'he CP-9200SH and the CP-9200H are slightly different.
Equivalent to TRACE-RD function on the CP-9200H.

Jote) 0 mark in the "I] Instruction " column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction. 1

C Differences on Programming between CP-9200H and CP-9200SH

For details of each instmctlon, refer t o Chapter 4 "-BASIC INSTRUCTIONS".

instruction

Sequence -[S H (set coil)

None

-
instruction -[R H (reset coil)

codified DDC instruction LAU (with both functions LAU and VLAU
ffitructions of LAU -and VLAW

SLAU (with both functions SLAU and VSLAU
of SLAU and VSLA

System function DTRC-RD TRACE-RD

MSG-SND
MSG-RCV

D i U0 INS, OUTS
instruction

leleted DDC instruction None WID
ffitruetions System function MC-WRITE

None MC-REA
MC-CHK

None LMUL
None LDW

.pplication capacity equivalent to equivalent to
12 k stepdCPU 4 k steps1CPU

Iata Register common 32 k words/CPU 16128 words
lemory to all DWGs 0 .. (common for CPUs)

128 words Input register 5 k w o r d d ~ ~ ~
.@ (common for CPUs)
Output register 5 k worddCPU 128 words
(0) (common for CPUs)
System register 1 k wordsICPU 256 worWCPU

Register unique Max. 16 k wordslDWG, 2 k worddCPU
' to each DWG (D) function

DWG constant Max. 16 k worddDWG, Max. 512 wordslDWG

register (C)

Remarks

As CP-9200SH has no
memory card connection
function, the functions
related to memory card
(MC-WRITE, MC-READ
MC-CHK) are deleted.
CP-9200SH supports
double-lengtb integer
multiplicationldivision
tunetion (LMUL, LDIV) i
the instructions X and -

With CP-9200H, M, I, ar
registers are common f o ~
CPUO and CPU1.
With CP-9200SH, they a
unique each for CPUl a
CPU2.
With CP-9200H, D registe
is common to all DWG's.
With CP-9200SH, it is

I
unique to each DWG.
With CP-9200H. I and 0
registers are cleared at the
power turned ON. With CP
9200SH, they are not
cleared a t the power t u n e (
ON.
The number and contents c
S register are different
between CP-9200H and CP
9200SH.

APPENDIX

stepdDWG,
function
Drawing 13 lays 12 lays

1 hierarchy
Shared memory between CPUs Possible when M register M register

is set on the screen
Program secret protection Possible in units of drawing Possible in units of -

CPU
Calendar function Provided Not provided
MEMBUS I/F M and I register S, I, 0 , M, and D

(possible by CPU) register
Servo l Area Fixed U0 reeister Common with For CP-9200SH. the

I parameter I (128 w o r d s l ~) M register number and arrangement c
(IWCOOO to WFFFF, LO worddaxis) servo parameters and their
OWCOOO to OWFFFF) (MWOOOOO functiks are partly

to MWOO399) different from those of
Servo fixed Settings on the screen Setting of M register CP-9200H.
oarameter (separated from (included in servo . *

servo parameter) parameter)
Temperature input The system function Temperature input

MSG-SND is used. display
Compatibility of user program Provided with source -

conversion tool to convert
the user program for
CP-9200H to that for

memory and data memory program memory and
(S, I, 0, M, and D register) data memory (S and
for each CPU are cleared. D register) for each

CPU are cleared, but
M register is not
cleared.

MACHINE CONTROLLER CP-9200s

PROGRAMMING MANUAI

YASKAWA ELECTRIC AMERICh INC.
2121 hamM Dnre S0.h Nh- ILECC85 J S A
Rmel+47-887.7m3 FPI 1-8478877370

MOTOMAN INC. HEADOUARTERS
805 ubm une Was! Cwolton On 45449 r S A
Ram t437-8476Xa Fax 1-937-8476277

YASKAWA EL~TRICO W BRASIL COHl%CIO LTDA.
A m d . F-F ho. 6X, &m, SaaoSao PAloSP, Bma CEP W 0 0 0
~on.54>1.5071-2552 FPX 55.1 1558?a7%

YASKAWA ELECTRIC EUROPE GmbH
*m Kmnbrgsr dang 2 65824 %-*DM Germmy
Rane 498196.569-300 Fax 196196888-301

YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orshudton W a n CumbsmsulJ, GBB 9LF. U n M ffingdom
Phone 44-1236735MO Fax 14-1295-458162

YASKAWA ELECTRE (SINGAPORE) PTE. LTD.
151 Low Chum. W 4 1 . New Tech Pa* S-m555741, Sl-n
mane .%.ze.z.m ax 6 5 . 2 8 ~ ~ 3

YASKAWA ELECTRIC (SHANGHAI) CO.. LTD.
LF M I8 I\olu F l m Wa-o F c r T m a Z o n P-ng N r A- -2m1SI Chne
Rm. 86-21-58663470 Fax 862158665869

YATEC ENGINEERING CORPORATION
Snsn h- 1- Sun] am-@ &Icing 1ff I46 hng C i u q R m . Tsrp* Tawen
R m e eS522%90010 Fu. 886-2.X674677

YASKAWA ELECTRIC (HK) COMPANY LIMITED
Rm 290910 now UOng AaLB 186.191 CCn-hl Read West nOnOi(on9
Rme 852.2833.2385 F a 8522547-5773

BElJlNG OFFICE
R- NO. 301 Mh- Bvldngof wing In~mMomt Uub. 21
JIMpuomsnWi A"."us. Beijw 10m20. am
Phonee5.1065z-1850 Fsxffi-106532-1851

TAIPEI OFFICE
S h n HsWg T q Sun. Chmn. BuUdng 10F 146 Sung Chienp Road, Tim, Tuwm
Ron. BBb22563M10 Fax 885-2-25874677

SHANGHAI YASKAWA-TONWI M 6 E CO.. LTD.
27 Hui He Rosd Shanghei WlinaZWU7
R m e S216531-1242 Fax 86-216553-%%3

BEUING YASKAWA BElKE AUTOMATION ENGINEERING CO.. LTD.
Jo xue Y- Rma. d a b . &fin] P R Chne Poa C c d 100083
phone W.106TU-2782 Fa2 86 ?06232.15)6

SHOUGANG MOTOMAN ROBOT CO., LTD.
7, YongfwgNo#l Strr1. Wing Ern- Technd@d I n w m n l & aUdWmmt A M .
seijiw lm076, P.R. Chris
Row 85-1087884551 F a 86106188-2978

Y YASKAWA ELECTRIC CORPORATION

Sp.cifications are subject lo change without notice
for ongoing product modifrations and improvements.

MANUAL NO. SIE-C879-4

0 Printed in Japan April 2WO
99-7c3
08471Z%

	Top cover
	Contents
	1.Introduction to Programming
	1.1 Programming Languages

	2.Hierarchical Structure of the Drawing System and Programs
	2.1 Types and Priority Levels of Parent Drawings
	2.2 Execution Control of Parent Drawings
	2.3 Hierarchical Structure of Drawings
	2.4 Functions

	3.Register Management Method
	3.1 Register Designation Method
	3.2 Data Types
	3.3 Types of Registers
	3.4 Symbol Management
	3.5 Upward Linking of Symbols and Automatic Number Allocation

	4.Basic Instructions
	4.1 Instruction with []
	4.2 Program Control Instructions
	4.3 Direct I/O Instructions
	4.4 Sequence Circuit Instructions
	4.5 Logical Operation Instructions
	4.6 Numerical Operation Instructions
	4.7 Numerical Conversion Instructions
	4.8 Numerical Comparison Instructions
	4.9 Data Operation Instructions
	4.10 Basic Function Instructions
	4.11 DDC Instructions
	4.12 Table Data Operation Instructions

	5.SFC Programming
	5.1 Configuration of SFC Program
	5.2 Execution of SFC
	5.3 SFC System Operation Registers
	5.4 SFC Flowchart
	5.5 SFC Action Box
	5.6 SFC Output Definition Time Chart
	5.7 Step Name Designation Method
	5.8 Taking Out System Step No.
	5.9 Precautions upon Preparation of SFC Program

	6.Table Format Programming
	6.1 Types of Table Format Programming
	6.2 Execution of Table Format Programs
	6.3 Constant Table (M Register)
	6.4 Constant Table (# Register)
	6.5 I/O Conversion Table
	6.6 Interlock Table
	6.7 Part Composition Table
	6.8 Constant Table (C Register)

	7.Standard System Functions
	7.1 Data Trace Read Function (DTRC-RD)
	7.2 Trace Function (TRACE)
	7.3 Failure Trace Read Function (FTRC-RD)
	7.4 Inverter Trace Read Function (ITRC-RD)
	7.5 Inverter Constant Write Function (ICNS-WR)
	7.6 Inverter Constant Read Function (ICNS-RD)
	7.7 CP-213 Initial Data Setting Function (ISET-213)
	7.8 Send Message Function (MSG-SND)
	7.9 Receive Message Function (MSG-RCV)
	7.10 Counter Function (COUNTER)
	7.11 First-In First-Out Function (FINFOUT)

	Appendix
	A. Types of Instruction Words
	B. List of Instructions
	C. Differences on Programming Between CP-9200H and CP-9200SH

