'MACHINE CONTROLLER CP-9200SH
PROGRAMMING MANUAL

YASKAWA . MANUAL NO. SIE-C879-40.3B

Introduction

This Programming Manual provides descriptions on the programming language which is
essential for preparing the software for the Machine Controller CP-9200SH.

In this manual, "CP-717" refers to Control Pack CP-717, which is one of the peripheral devices.

Listed below are other documents relevant to the CP-9200SH. Please refer to these materials
also.

B Relevant Documents

Document No. Name of Document

SIE-C873-16.4 FDS System Installation Manual

SIE-C877-17.4 | Control Pack CP-717 Operation Manual (Vol.1)

SIE-C877-17.5 Control Pack CP-717 Operation Manual (Vol.2)

TOE-C877-17.7 | Control Pack CP-717 Instructions

CHE-C879-40 CP-9200SH Brochure

KAE-C879-40 CP-9200SH Catalog

SIE-879-40.1 Machine Controller CP-9200SH User's Manual

SIE-879-40.2 | Machine Controller CP-9200SH Servo Controller User's Manual

TABLE OF CONTENTS

1 INTRODUCTION TO PROGRAMMING 11
1.1 Programming Languages 1-2

2 HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS 2-1
2.1 Types and Priority Levels of Parent Drawings 2-2
2.2 Execution Control of Parent Drawings 2-3

2.2.1 Execution Control of Parent Drawings 2-3

2.2.2 Scheduling of the Execution of Scan Process Drawings 2-3
2.3 Hierarchical Structure of Drawings 2-4

2.3.1 Executmn of Drawings 2-4

2.3.2 Execution of Process of Drawings 2.5
2.4 Functions 2-6

2.4.1 Function Definition 2-6

2.4.2 User Function Preparation Procedure 2-7

3 REGISTER MANAGEMENT METHOD 31
3.1 Register Designation Method 3-2 .
3.2 Data Types 3-3
3.3 Types of Registers 3-5

3.8.1 DWG Registers 3-5
3.3.2 Function Registers 3-6
3.3.3 CPU Internal Registers 3-6
3.3.4 Subscriptsiandj 3-7
" (1) When a Subscript is Attached to Bit Type Data 3-7
{2) When a Subscript is Attached to Integer Type Data 3-7
(3) When a Subscript is Attached to Double-Length Integer Type Data 3-7
(4) When a Subscript is Attached to Real Number Type Data 3-7
(5) Example of Program Using a Subscript 3-7
3.3.5 Function YO and Function Registers 3-8
3.3.6 Programs and Register Referencing Ranges 3-9
3.4 Symbol Management 3-10
3.4.1 Symbol Management in the DWG's 3-10
: 3.4.2 Symbol Management in the Functions 3-10
3.5 Upward Linking of Symbols and Automatic Number Allocation 3-11
3.5.1 Upward Linking of Symbols 3-11
3.5.2 Automatic Register Number Allocation 83-11

4 BASIC INSTRUCTIONS — = = 4-1
4.1 Instructionwith[] 4-3 : ’
4.2 Program Control Instructions 4-4
4.2.1 Child Drawing Referencing Instruction (SEE} 4-4
4.2.2 FOR Structure Statement 4-5 .
4.2.3 WHILE Structure Statement 4-6
4.2.4 IF Structure Statement 4-8 :
(1) IF Structure Statement-1 4-8
(2) IF Structure Statement -2 4-9
4.2.5 Function Referencing Instruction (FSTART) 4-10
4.2.6 Function Input Instruction (FIN) 4-11
4.2.7 Function Output Instruction (FOUT) 4-12
4.2.8 Comment Instruction (COMMENT) 4-14
4.2.9 Expansion Program Execution Instruction (XCALL) 4-16
4.3 Direct /O Instructions 4-17
4.3.1 Continuous Execution Type Direct Input Instruction (INS) 4-17
4.3.2 Continuous Execution Type Direct Output Instruction (OUTS) 4-19

4.4

4.5

4.6

4.7

4.8

4.9

Sequence Circuit Instructions 4-20

4.4.1 NO Contact Instruction (—Hr—) 4-20

4.4.2 NC Contact Instruction (—4—) 4-21

4.43 Coil Instruction (—o—) 4-21 '

444 Set Coil / Reset Coil Instruction (—[SH -RH) 4-22
4.4.5 Rising Pulse Instruction (——) 4

4.4.6 Falling Pulse Instruction (—f—) 4- 24

447 On-delay Timer Instruction: Unit of measurement=0.01 seconds
4.4.8 Off-delay Timer Instruction: Unit of measurement=0.01 seconds
4.4.9 On-delay Timer Instruction: Unit of measurement=1 seconds
4.4.10 Off-delay Timer Instruction: Unit of measurement=1 seconds
Logical Operation Instructions 4-34

4.5.1 AND Instruction 4-34

4.56.2 OR Instruction 4-35

4.6.3 XOR Instruction 4-35

Numerical Operation Instructions 4-36

4.6.1 Integer Type Entry Instruction (+) 4-36

4.6.2 Real Number Type Entry Instruction (|) 4-37
4.6,3 Storage Instruction (==) 4-38

4.6.4 Addition Instruction { +) 4-39

4.6.5 Subtraction Instruction{ -) 4-40

4.6.6 Extended Addition Instruction (++) 4-41

4.6.7 Extended Subtraction Instruction (- } 4-42
4.6.8 Multiplication Instruction { X) 4-43
4.6.9 Division Instruction (—) 4-44

4.6.10 MOD Instruction 4-45

4.6.11 REM Instruction 4-45

4.6.12 INC Instruction 4-46

4.6.13 DEC Instruction 4-47

4.6.14 Time Add Instruction (TMADD) 4-48
4.6.15 Time Subtraction Instruction (TMSUB) 4-49
4.6.16 Time Spend Instruction (SPEND) 4-50
Numerical Conversion Instructions 4-52

4.7.1 INV Instruction 4-52

4.7.2 COM Instruction 4-53

4.7.3 ABS Instruetion 4-53

4,74 BIN Instruction 4-54

4.7.5 BCD Instruction 4-54

4.7.6 PARITY Instruction 4-55

4.7.7 ASCII Instruction 4-55

4,7.8 BINASC Instruction 4-56

4,.7.9 ASCBIN Instruction 4-57

Number Comparison Instructions 4-58

4.8.1 Comparison Instructions 4-58

4.8.2 Range Check Instruction (RCHEK) 4-60
Data Operation Instructions 4-62

4.9.1 ROTL Instruction and ROTR Instruction 4-62
492 MOVB Instruction 4-63

493 MOVW Insiruction 4-65

4.9.4 XCHG Instruction 4-66

4.9.5 SETW Instruction 4-67

49.6 BEXTD Instruction 4-68

497 BPRESS Instruction 4-69

4.9.8 BSRCH Instruction 4-70

4.9.9 SORT Instruction 4-71

4.9.10 SHFTL Instruction and SHFTR Instruction 4-72
4911 COPYW Instruction 4-73

4912 BSWAP Instruction 4-74

TABLE OF CONTENTS

{" }) 425
4 "F) 4-27
(f 1) 429
H 1) 431

4.10 Basic Function Instructions 4-75

SQRT Instruction 4-75

SIN Instruction 4-76

COS Instruction 4.77

TAN Instruction 4-78

ASIN Instruction “4-78

ACOS Instruetion ' 4-78

ATAN Instruction 4-79

EXP Instruction 4-80

LN Instruction . 4-80

LOG Instruction 4-80

DDC Instructions 4-81

DZA Instruction 4-81

DZB Instruction 4-82

LIMIT Instruction 4-84

PI Instruction 4-86

PD Instruction " 4-88

PID Instruction 4-90

LAG Instruction 4-93

LLAG Instruction 4-94

FGN Instruction 4-96

IFGN Instruction 4-98

LAU Instruction 4-100

SLAU Instruction 4-103

PWM Instruction 4-107

Table Data Operation Instructions 4-108
Block Read Instruction (TBLBR) 4-108
Block Write Instruction (TBLBW) 4-109

411

4.12

5 SFCPROGRAMMING

5.1
5.2
5.3
5.4
5.5
56
5.7
5.8
5.9

4.10.1
4.10.2
4.10.3
4.10.4
4.10.5
4.10.6
4.10.7
4.10.8
4.10.9
4.10.10

411.1
4.11.2
4113
4114
4.11.5
4116
4.11.7
4.11.8
4.11.9
4.11.10
4.11.11
4.11.12
4.11.13

4121
4.12.2
412.3
4124
4125
4.12.6
4.12.7
4.12.8
4.12.9

Row Search Instruction: Vertical Direction (TBLSRL) 4-110
Column Search Instruction: Horizontal Direction (TBLSRC) 4-111

Block Clear Instruction (TBLCL) 4-112
Inter Table Block Transfer Instruction (TBLMV) 4-113

Cue Table Read Instruction (QTBLR, QTBLRI) 4-114
Cue Table Write Instruction (QTBLW, QTBLWI} 4-115

Cue Pointer Clear Instruction (QTBLCL) 4-116

Configuration of an SFC Program 5-2
Exzecution of SFC 52 :
SFC System Operation Registers 5-3
SFC Flowchart 5-4

SFC Action Box 5-5

SFC Output Definition Time Chart 5-6
Step Name Designation Method = 5-7
Taking Out System Step Nos. 5-7

Precautions upon Preparation of an SFC Program 5-8.

5.9.1
5.9.2

59.3
5.9.4

5.9.5

Restrictions concerning Branching and Converging Connections 5-9
Restriction concerning Branching and

Converging Connections in a Multi-Token Structure
Restriction of the Number of Branches in a Multi-Token Structure

Restrictions concerning Subroutines 5-13

ey
)

(3) Restrictions concerming Branching 5-16

()

Restrictions concerning Nesting (Depth of Macro) 5-14

Restrictions concerning Jumping 5-15

5-11

5-12

5-1

Restrictions concerning the Timer Transition Condition Instructlon 5.17
Restrlctlons concerning Step Names 5.18

TAELE OF CONTENTS

6 TABLE FORMAT PROGRAMMING 6-1

6.1
6.2
6.3

6.4

6.5

6.6

6.7

6.8

Types of Table Format Programs 6-2
Execution of Table Format Programs 6-3
Constant Table (M Register) 6-4
6.3.1 Outline of the Constant Table (M Register) 6-4
6.3.2 Preparing the Constant Table (M Register) 6-5 i
(1) Defining the Constant Table (M Register) 6-5
(2) Inputs into the Constant Table (M Register) 6-5
Constant, Table (# Register) 6-6
6.4.1 QOutline of the Constant Table (# Register) 6-6
6.4.2 Preparing the Constant Table # Register) 6-7
" (1) Defining the Constant Table (# Register) 6-7
(2) Inputs into the Constant Table (# Register) 6-7
/O Conversion Table 6-8
6.5.1 Outline of the I/O Conversion Table 6-8
6.5.2 Preparing the I/Q Conversion Table 6-9
(1) Scale Conversion Function 6-9
(2) Bit Signal Conversion Table 6-10
Interlock Table 6-12
6.6.1 Outline of the Interlock Table 6-12
6.6.2 Preparing the Interlock Table 6-13
Part Composition Table 6-14
6.7.1 Outline of the Part Composition Table 6-14
6.7.2 Preparing the Part Composition Table 6-15
6.7.3 Preparing the Function Program for Parts 6-16
Constant Table (C Register) 6-17
6.8.1 Outline of the Constant Table (C Register) 6-17
6.8.2 Preparing the Constant Table {C Register) 6-18
(1) Defining the Constant Table (C Register) 6-18
(2) Inputs into the Constant Table (C Register) 6-18

7 STANDARD SYSTEM FUNCTIONS 7-1

7.1

7.2
7.3

7.4

Data Trace Read Function (DTRC-RD) 7-2
7.1.1 Readout of Data 7-3
7.1.2 Configuration of the Read Data 7-4
(1} Data Configuration 7-4
(2) Record Length 7-4
(3) Number of Records 7-4
Trace Function (TRACE) 7-5
Failure Trace Read Function (FTRC-RD) 7-6
7.3.1 Data Readout (Failure Occurrence Data) 7-7
7.3.2 Readout Data Configuration (Failure Occurrence Data) 7-7
(1) Data Configuration 7-7
(2) Record Configuration 7-7
(3) Structure of Register Designation No. {2 words) 7-7
{(4) Number of Records 7-7
7.8.3 Data Readout (Failure Restoration Data) 7-8
7.3.4 Readout Data Configuration (Failure Restoration Data) 7-8
(1) Data Configuration 7-8
(2) Record Configuration 7-8
- (3) Number of Records 7-8
Inverter Trace Read Function (ITRC-RD) 7-9
7.4.1 Readout of Inverter Trace Data 7-10
7.4.2 Readout Data Configuration 7-10
(1) Data Configuration 7-10
(2} Record Length 7-10
(3) Number of Records 7-10

7.5

7.6
7.7
7.8

7.9

Inverter Constant Write Function ICNS-WR) 7-11
7.5.1 Configuration of the Write-in Data 7-12
7.5.2 Method of Writing to an EEPROM 7:13
(1) WRITE ENTER Command 7-13
(2) Program Example 7-14
Inverter Constant Read Function ICNS-RD) 7-16
CP-213 Initial Data Setting Function (ISET-213) 7-18
Send Message Function (MSG-SND) 7-19
7.8.1 Parameters 7-20
(1) Process Result (PARAMOO) 7-20
(2) Status (PARMO01) 7-21
(3) Called Station # (PARAMO02) 7.22
(4)° Function Code (PARAMO4) 7-22
(5) Data Address (PARAMO5) 7-23
(6) Data Size (PARAMO6) 7-23
(7) Called CPU # (PARAMO7) 7-24
(8) Coil Offset (PARAMO8) 7-24
(9) Input Relay Offset (PARAMO09) 7-24
(10 Input Register Offset (PARAM10) 7-24 .
(11) Holding Register Offset (PARAM11) 7-24 ’
{12) For System Use (PARAM12) 7-24
(13) Relationship between the Data Address, Size and Offset 7-24
(14) When Transmission Protocol is set to Non-procedural 7- 24
7.8.2 Inputs 7-25
(1) EXECUTE (Send Message Executlon Command) 7-25
(2) ABORT (Send Message Forced Interruption Command) .7-25
(3) DEV-TYP (Transmission Device Type) 7-25
(4) PRO-TYP (Transmission Protocol) 7-25
(6) CIR-NO (Circuit No.}- 7-25 :
(6) ' CH-NO (Channel No.) 7-25
_ (7Y PARAM (Set Data Head Address) 7-25
7.8.3 Outputs 7-26
(1) BUSY (In Process) 7-26
(2 COMPLETE (Completion of Process) 7-26
{3) ERROR (Occurrence of Error) 7-26
7.8.4 Limitations Arising from Other Companies'
Communications Protocols with the CP-217IF 7-27
(1) When Making a Dedicated Protocol
Connection Link with the MELSEC computer 7-27
(2) When Making an OMRON Upward Linking Mode (SYSWAY) Connection 7-27
7.8.5 Program Example 7-28
Receive Message Function (MSG-RCV) 7-29
7.9.1 Parameters 7-30.
(1) Process Result (PARAMOO) 7-30
(2) Status (PARAMO1) 7-31
(3) Calling Station # (PARAMO02) 7-31
(4) Function Code (PARAMO04) 7-31
(5) Data Address (PARAMO05) 7-31
{(6) Data Size (PARAMO6) 7-31
(7) . Calling CPU # (PARAMO0O7) 7-31
(8) Coil Offset (PARAMO8) 7-31
(9) . Input Relay Offset (PARAMO09) 7-31
(10) Input Register Offset (PARAM 10) 7-32
(11) Holding Register Offset (PARAM11) 7-32
(12) Write-in Range LO (PARAM12), Write-in Range HI (PARAM13) 7-32
(13) For System Use (PARAM14) 7-32
(14) When Non-procedural is set for Transmission Protocol 7-32

TABLE OF CONTENTS

7.9.2 Inputs 7-32
(1) EXECUTE (Receive Message Execution Command) 7-32
(2) ABORT (Receive Message Forced Interruption Command) 7-32
(3) DEV-TYP (Transmission Device Type) 7-32
(4) PRO-TYP (Transmission Protocol) 7-38
(5) CIR-NO (Circuit No.) 7-33 b
(6) CH-NO (Channel No.) 7-33
{7) PARAM (Set Data Head Address) 7-33
7.9.3 Qutputs 7-33
(1) BUSY (In Process) 7-33
{(2) COMPLETE (Completion of Process) 7-33
{(3) ERROR (Occurrence of Error) 7-33
7.9.4 Limitations Arising from Other Companies'
Communications Protocols with the CP-217IF 7-34
(1) When Making a Dedicated Protocol
Connection Link with the MELSEC Computer 7-34
(2) When Making an OMRON Upward Linking Mode (SYSWAY) Connection 7-34
7.9.5 ‘Program Example 7-35
7.10 Counter Function (COUNTER) 7-36
7.11 First-in First-out Function (FINFOUT) 7-37

Appendix A-l
A Types of Instruction Words A-2
B List of Instructions A-3 .
C Differences on Programming between CP-9200H and CP-9200SH A-16

1. INTRODUCTION TO PROGRAMMING

1 INTRODUCTION TO

PROGRAMMING

The programming languages that can be used
with CP-92005SH are described in this chapter.

1-1

Programming Languages

CP-9200SH support the programming languages shown in Table 1.1. User programs can be
prepared using the programming language that is optimal for the application. For details,
refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1).

Table 1.1 Programming Languages that can be Used

Programming Language , Characteristics

+ Programs are prepared using relay circuit instructions

: and text type instructions (control instructions, numerical

Ladder program operation instructions, etc.)

+ Sequential processes, numerical operation processes,data
processes, and various other programs can be written.

» Programs for specific appliéations are prépared in FIF
(fill in form) with the use of tables.

Table forma{t program + Tables, such as the constant data setting table, interlock
table, and part composition table, are available.
) . | = Sequential programs are prepared in flowchart form by
SFC (sequential function the use of steps and transition conditions.
chart) program - Sequences, such as automatic operation flows, can be

written readily.

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

2 HIERARCHICAL STRUCTURE OF THE

DRAWING SYSTEM AND PROGRAMS

Drawings, which are the basic programming units,
and their hierarchical structure and function

definition methods are described in this chapter.

2.1

User programs are managed in units of drawings, which are identified by the drawing No.
(DWG No.). These drawings serve as the basis of user programs.

There are parent drawings, child drawings, grandchild drawings, and operation error processing
drawings. Besides drawings, there are alse functions, which can be referenced freely from
each drawing.

Parent Drawings
The parent drawing is executed automatically by the system program when the "Condltlon of
Execution” of Table 2.1 is established.

Child Drawings
Child drawings are executed upon being referenced from the parent drawing by the SEE
Instruction.

Grandchild Drawmgs
Grandchild drawings are executed upon being referenced from a child drawing by the SEE
Instruction.

Operation Error Processing Drawing
This is executed automatically by the system program upon occurrence of operation error.

Functions

Functions are executed upon being referenced from the parent, child, or grandchild drawing
by the FSTART Instruction.

Types and Priority Levels of Parent Drawings

Parent drawings are classified by the first character of the drawing (A, I, H, L) according to
the purpose of the process. The priority levels and execution conditions of drawings are defined

- as shown in Table 2.1. For details, refer to the Control Pack CP-9200SH User's Manual (SIE-

C879-40.1).
Table 2.1 Types and Priority Levels of Parent Drawings
Typeof | : . _ Number of
Parent Dlizlfvi;f Pil;zil:y Condition of Execution - Drawings
Drawing £ : {Note)
Starting Turning on the poﬁver {Executed once
DWG.A j:mcgss) 1 when the power is turned on.) 64
' Interruption - Start of interruption (Executed upon
DWG. T process 2 rising of interruption input signal.) 64
High-speed Start of fized cycle (Executed on each
DWG.H |gcan process 8 high-speed scan time.) 100
Low-speed’ : . | Start of fixed cycle (Executed on each
DWG.L |gean process 4. low-speed scan time.) ’ 100

(Note) : The details of the number of drawings is as follows. '

Parent drawing : ()

Operation error processing drawing: 1 ({J00)

Child drawings . n-2 (001 to 99) A maximum total of n-2 child
Grand child drawings } (0aA 01 to 99)} and grandchild drawings.

(A, 1:62, H, L: 98)

* n: the maximum number of drawings that can be used.
0: first character of the drawing (A, I, H, L)
AA; child drawing number

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

2.2 Execution Control of Parent Drawings
221 Execution Control of Parent Drawings

Each drawing is executed based on its priority level as shown in Fig. 2.1.

l Power ON]
I
IWG.A
Starting Process
Drawing
On each high- On each low-)
speed scan time speed scan time Operation Error Interruption Signal
{ Batchoutput | | Batch output | DWG.X00 DWG.I
Operation Error Interruption
- | Processing Drawing Process Prawing
| Batchinput | [Batchinput | X:A,LHL
T l WO | continue with continue with
High-speed Scan Low-speed Scan original process original process
e i

Fig. 2.1 Execution Control of Parent Drawings

222 Scheduling of the Execution of Scan Process Drawings

The scan process drawings are not executed simultaneously but are scheduled based on priority
levels as shown in Fig. 2.2 and are executed on the schedule.

P

¢ Low-speed scan

High-speed High-speed High-speed High-speed
<~ gean " scan M scan N scan

N

DWG.H

DWG.L

Ground *

1in
execution

* : For executing internal processes (self-diagnosis, etc.) of the system.

Fig. 2.2 Scheduling of the Execution of Scan Process Drawings

2-3

23

2.3.1

——{owesy }———{pwexmor |——

Hierarchical Structure of Drawings

The drawings are arranged in the manner: parent drawing - child drawing - grandchild drawing.
However, a parent drawing cannot reference a child drawing of a different type and a child
drawing cannot reference a grandchild drawing of a different type. The child drawing is
referenced from the parent drawing, and from that child drawing the grandchild drawing is
referenced. This structure is always followed, and is called the hierarchical structure of
drawings. ‘ '

Execution of Drawings

The user prepares each processing program with a parent drawing - child drawing - grandchild
drawing hierarchy as shown in Fig. 2.3.

[Parent Drawing] - [Child Drawing] [Grandchild Drawing] . [Funetion]

Reférencing ofa
function by a grandchild
" drawing '

DWGXO0L

DWGX0Lmm

Referencing of a function by a

: : child drawing
—— DWeXm | —

Referencing of a function by a

parent drawing _
[FUNC—064 |

(Note) Substitute A, I, H orLin X.

Fig. 2.3 Hierarchical Structure of DWG's

The parent drawing is executed automatically by the system, since from Table 2.1 of 2.1 "Types
and priority of parent drawings," criteria for execution are determined separately for each
type. In other words, the parent drawing is automatically called (called up and executed) by
the system. Thus, the customer can execute any child or grandchild drawing by programming
a DWG reference instruction (SEE instruction) in the parent or child drawings.

Functions listed in 2.2 may be referenced from all drawings. Furthermore, a function can be
referenced by a function. ' .

If a operation error occurs, operation error processing drawings corresponding to each screen
will be started.

2.3.2

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

Execution Process of Drawings

The execution process of the drawings arranged in a hierarchy is carried out in a manner
whereby lower-ranking drawings are referenced by upper-ranking drawings.

Taking an example of DWG. A, the hierarchical structure of DWGs (drawings) is shown in
Fig. 2.4.

Start up when system program
execution conditions are satisfied

!

Parent Drawing Child Drawing Grandchild Drawing
DWG.A DWG.A0 DWG.A01.01
SEEAOL =3 SEE A0LOl _
< FUNC—001 Function
»” [FUNC—NI
—x
— | DEND
DWG.AQLO2
SEE A01.02] DEND
' FUNC-001
— [pEND L— |pEND
System
SEE AQ2 - automatically
Occurrence of a || { 2ctivates - | DWG.A00
operation error <
DEND DEND

DWG expression : DWG.[AA . OO
E Grandchild drawing no.{01 to 99)
Child drawing no. (01 to 99)
Type of parent drawing (A, I, H, L)
DWG.[00

Operation error drawing (A, I, H, L)

Fig. 2.4 Drawing Execution Process

2-5

2.4

241

Functions |

Functions can be freely referenced from any drawing. Functions can even be referenced
simultaneously from drawings of different types and different hierarchies. Further, functions
can also reference other functions. The following benefits can be obtained by using functions.
- It become easy to arrange a program into parts.
- The program can be prepared and maintained easily.
A function is composed of the function definition, which determines the number and types of
data that are input into and output from a function, and the main body (program), which
depicts the processes that are to be executed according to the inputs and outputs. Functions
can be classified into standard system functions, which are made available by the system, and
user funct:lons which are deﬁned by the user.

Standard System Functlons‘

The user can freely use a function that has been predefined by the system, but is not permitted
to modify the contents of that function. In other words, the user cannot freely create definitions
(program). Refer to Chapter 7 "Standard System Functions" for more information on system
functions.

User Functions

These are functions that are defined (programmed) freely by the user. The user prepares the
function definition and the main body (program) of the function. See 2.4.2 "User Function
Preparation Procedures" concerning the preparation methods.

Function Definition

Functions are defined by the user at the time of user function preparation using the graphic
expression form for functions shown in Fig. 2.5.

FUNC-011
: - Name of Function

' Bit input '— INPUT-1 OUTPUT-1 |~ Bit output

' Bit input —INPUT-2 OUTPUT-2 — Bit output
Numerical input - 2 INPUT-3 OUTPUT-3|-::» Numerical output
(integer, double-length ‘ ‘ ' (integer, double-length
integer, real number) C integer, real number)
Numerical iﬁput === INPUT-4 OUTPUT4 |:=:» Numerical output
(integer, double-length : INPUT-5 . (integer, double-length
integer, real number) ’, Address input integer, real number)

1

(Note): The names of the function, the inputs, and the outputs are respectively expressed in 8
or less alphanumeric characters.

Fig. 2.5 Graphic .Expression of a Function

2.4.2

2. HIERARCHICAL STRUCTURE OF THE DRAWING SYSTEM AND PROGRAMS

User Function Preparation Procedure

Fig. 2.6 shows the procedure for preparing user functions, which can be defined freely by the

user.

Determination of
the I/O specifications

Preparation of
the function definition

Programming of
the function body

Programming of the function
referencing program

Determine the number of I/0s and the data types.

Input is made using the CP-717.

Prepare in the same manner as the DWGs. However, the
types of registers used will differ from those used with the
DWG's. Be careful of the correspondence of the register
numbers used in the function program and the data input/
output upon referencing the function.

Input in the following procedures:

A Input the name of the function with the FSTART
Instruction.

B TUse the FIN Instruction to prepare the program for input
data.

€ Use the FOUT Instruction to prepare the program for
output data.

: If a system function is to be used, prepare the program upon referring to the description

on I/O deftnition in Chapter 7 "STANDARD SYSTEM FUNCTIONS". Since the I/O
specifications, the function definition, and the main body of the function program are
already provided by the system in the case of system functions, these do not have to be

defined or prepared.

Fig. 2.6 User Function Preparation Procedure

For more details on operating the CP-717, refer to the Control Pack CP-717 Operation Manual

(SIE-C877-17.4, -11.5).

2-7

3. REGISTER MANAGEMENT METHOD

3 REGISTER MANAGEMENT
METHOD

Various types of registers are introduced according
to application and the register attributes and
designation methods are described in this chapter.

3-1

‘

'\

3-2

3.1

Register Designation Method

As shown in Table 3.1, registers may be designated by direct register No. designation or by
symbolic designation.

These two types of register designation methods may be used together in the user programs.
When symbolic designation is to be used, the relationship between the symbol and the register
No. must be defined in the symbel table described later.

Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details.

Table 3.1 Register Designation Methods

D e'ggpfazfon Designation Method
Direct register Bit type register designation) : MB00100A T
No. designation |Integer type register designation . : MW001000
Double-length integer type register designation : ML00100[3
Real number type register designation : MF001000]
Address type register designation : MAOO100[3
[J: In the case of subscript designation, the subscript i or j is attached
after the register No.
Symbolic Bit type register designation : RESET1-A.[]
designation - |Integer typeé register designation : STIME-H.[3
: Double-length integer type register designation : POS-REF.[]
Real number type register designation : IN-DEF.[J
Address type register designation : PID-DATA.[J
An alphanumeric expression of
8 characters or less.
{1: In the case of subscript designation, a "." and then the subscript, i
or j,-are attached after the alphanumeric expression of the symbol
with 8 characters or less.

— Direct Register No. Designation

RegisterNo.: V. T No. [BitNo.] [Subscript]

|—» Can designate the subscript i or j.
When T = B (bit type) (hexadecimal: 0 to F)
. Register No. given by V (decimal/hexadecimal)

‘—— Data type givenby V(T:B | W | L | F | 4)

L— Type of register
DWG V:SIM|I|OiC
Function (V:S|MI|I1}101C

DIXIYIZ]A)

— Symbolic Designation

Symbol : [Symbol Name] [.J [Subscript]
r Can designate the subscript i or j.
Necessary when a subseript is to be used

(to differentiate between the symbol name and the
subseript).

> Name attached to the register: 8 characters or less

0 OHE0000

Alphanumeric or symbolic characters

Alphabetic or symbolic character

(A number cannot be used at the head of a symbol name.)

3.2

Data Types

3. REGISTER MANAGEMENT METHOD

There are five data types; the bit type, the integer type, the double-length integer type, the
real number type, and the address type. These are used according to the purpose.

Address type data may be used only for pointer designation,

Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for the corresponding
device for details.

Table 3.2 Data Types

Type | Data Type

Numerical Range

Remarks

B |Bit

ON,OFF

Used for relay cireuits.

W |Integer

-32768 to+32767
(8000H) (7FFFH)

Used for numerical operations. Values in
() are used in the case of logic
operations.

Ordinarily used in a series of instruction
groups that begin with an integer type
entry instruction (.). It can also be
used in a series of instruction groups
that begin with a real number type entry
instruction (-).

Double-
L |length
integer

-2147483648 to+2147483647
{80000000H) (7FFFFFFFH)

Used for numerical operations. Values in
{) are used in the case of logic
operations.

Ordinarily used in a series of instruction
groups that begin with an integer type
entry instruction (}—). It can also be
used in a series of instruction groups
that begin with a real number type entry
instruction (||-).

Real
number

+(1.175E -38 to 3.402E
+388),0

Used for numerical operations,

May only be used in a series that begins
with a real number type entry
instruction (|). Please keep in mind
that it cannot be used in a series of
instruction groups that begin with an
integer type entry instruction (}—).

A Address

0 to 32767

Used only for pointer designation.

Register Designation and Data Types

[MW001003
[MW00101}
[MW00102]

IMW00103]

[MB001006]

FEDCBAY98 76543212190

:I [ML00100]
[MF00100]

iML00102]

[MF00102]

IV [K S |

L
11 1
T 1 1
I I |
LI
11 1
UL
11 1

1
|
1
1
1
I
1
1

e e b= e ba e s o

1
|
|
|
I
1
1
]

!
|
I
!
!
|
I
i

1L T
] 1 1
1 1 1
1 1
T 7]
1 1 1
1L i
1 1 1

fMB00103A]

3-3

3-4

——— Pointer Designation =

Memory Register Domain [
Address .
m o Y S G A
v 777] 00100 o [LO0LO)

[uvoo1013

[¥¥00102)
[H¥00103]

[MF00100]

{MA00100]

b Fig. 3.1 Pointer Designation

In Fig. 3.1, MAOO100 signifies the memory address nn of MW00100.

By handing MA00100 to a function, the register domain below MW00100 may be used
for internal processes of the function. Such use of an address as an argument of a function
is referred to as "pointer designation". In this way, the register domain below MW00100
can be freely used for bits, integers, double-length integers, or real numbers.

3. REGISTER MANAGEMENT METHOD

3.3 Type of Registers
3.3.1 DWG Registers
The 7 types of register shown in Table 3.3 can be used in each DWG.
Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details.
Table 3.3 DWG Registers
Type| Name Deﬁgﬁ?;:lon Description Characteristic
SB. SW. SL. {Registers made available by the system.
S System SF’ > = {The register No. nnnnn is a decimal expression.
register (SAnnnnm) Upon system start-up, SW00000-SW00049 are all
cleared to 0.
MB, MW, Registers used in common among DWG's.
M Data ML, Used for I/F between DWG's, etc.
regoster |MFonnnn |The register number nnnnn is a decimal
(MAnnnnn) expression.
Register that is used for interface with I/O module
and communication module.
The register number hhhh is a hexadecimal
expression.
I Input {%1{1‘]2;; 1L, The register number is assigned on the module
register configuration definition screen. The register
(IAhhhh) numbers C000 and later are used for interface Used in
with motion modules such as SVA modules. For |common by
details, refer to the instruction manual of each DWG's
module.
Register that is used for interface with I/O module
and communication module,
The register number hhhh is a hexadecimal
expression.
0 Output 8%11?11‘?;’ OL, The register number is assigned on the module
register configuration definition screen. The register
(OAhhhb) numbers CO00 and later are used for interface
with motion modules such as SVA modules. For
details, refer to the instruction manual of each
module.
Constant CB, CW, CL, |Register that can only be referenced by a
C : CFnnnnn program. The register number nnnn is a decimal
register (CAnnnnn) |expression.
Registers that can only be referenced in a
program.
#B, #W, #L, |Can only referenced the corresponding DWG.
|#register |#Fnnnnn The actual application range is specified by the
(#Annnnn) |user with the CP- 717.
- The register number nnnnn is a decimal .
expression. Unique to
- - each DWG
Internal registers unique to each DWG.
DB. DW. DL Can only referenced the corresponding DWG.
. ’ * ¥ | The actual application range is specified by the
D |D register | DFnnnnn user with the CP- 717.
(DApnnnn) | The register number nnnnn is a decimal
expression.

3-5

332 Function Registers
The 11 types of registers shown in Table 3.4 can be used in each function.
Refer to the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details.
Table 3.4 Function Registers
Type Name Designation Method) Description Characteristic
. N Input into a function
Function : - | Bit input :XB0G0000 to XBOOOOOF
X |input XB,XW XL XFrnnnn |Integer input :XW00001 to XW00016
register Double-length integer input: XL00001 10 X1.00015
The register number nnnon s a2 decimal expression.
. Oﬁtputs from a function '
F:fctfn : - : Bit output “YBOOOUOO to YBODDOOF
Yy [° P‘;er YB,YW,YL YFonnnn {Integer output :YWO00001 to YW00016
Tegls Double-length integer output: YLO0001 to YL0O0015
The register number nnnhn is a decimal expression.
Register) Internal registers unique to each function.
Z |inside ZB,ZW,ZL,ZFnnnnn Can be used for internal processes of the function.
function - The register number nnnnn is a decimal expression. X
Unique to
Register E;;imal registers that use the address input value as the base |oach function
outside AL AFA address
A function ABAW.AL For linking with (S M, 1, O, #, DAnnnnn).
The register number nnnnn is 2 decimal expression.
. Register that can only be referenced by a program.
. Can reference only the corresponding function.
Register |#B#W#L#Fnonnn The actualapplication range is speclﬁed by the user with the
(#Annnnn) CP-T17.
' The register number nnnnn is a demmal expression.
Characteristic internal register for each function.
) Can reference only the correspondmg function.
D |D register DB.DW DLDF‘rxnnnn The actual application range is specﬂ:'led by the user with the
(DAnnnnn) CP-717.
' The register number nnnnn is a declmal expression.
S System SB,SW,SL,SFnnnnn :
register (SAnnnnn)
v jData MB,MW, ML,Mannnn Same as the DWG registers.
register (MAnnnnn) T . - ‘ _
Input IB,IW,ILIFhhhh (Smc? these registers are 1..lsed in common by both DWG s and |[Used in
1 register (IAhhhh) ; functions, be careful of their use when the same function is common by
it referenced from DWG's of different priority levels.) DWG's
0 Output .JOB,0W,0L,0Fhhhh '
register {OAhhhh)
C Constant |CB,CW,CL,CFnnnnn)
register (CAnnnnn) '

{Note) SA, MA, IA, OA, DA, #A, and CA may also be used inside a function.

333

CPU Internal Registers

The registers shown in Table 3.5 are provided ms1de the CPU. These are used for carrying out
user program processes.

:

Register

Table 3.5 CPU Internal Registers
' Usage

Aregister | Used as a reglster for logic, integer, and double-length integer
operations.

F register | Used as a register for real number operations.

B register | Used for relay circuit operations

I register | Used as an index register (I).

J register | Used as an index register (J).

3.3.4
|

3. REGISTER MANAGEMENT METHOD
Subscriptsiand j

Two types of registers, 1 and j, are used exclusively for modifying a relay number or register
number. i and j have the same function.
These subscripts are explained below with an example for each register data type.

{1) When a Subscript is Attached to Bit Type Data
This will be equivalent to adding the value of i or j to the relay number. For example if
1=2, MB000000i will be the same as MB000002. If J=27, MB000000; will be the same as
MB000001B. :

|—- 2 =1 | equivalent | MB000002

——
| pprens -

{2) When a Subscript is Attached to Integer Type Data
This will be equivalent to adding the value of i or j to the register number. For example,
if I=3, MWO000101 will be the same as MW00013. If J=30, MW00001j will be the same as
MWO00031.

equivaient
00030 =gy | TR | -Mwo00031
MW00001j

(3) When a Subscript is Attached to Double-Length Integer Type Data
This will be equivalent to adding the value of 1 or j to the register number. For example,
if I=1, ML00000i will be the same as ML00001. ML00000; will be as follows when 4=0
and J=1. Be careful.
Upper word Lower word
MW00001 MW00000

—

MW00002 MW00001

MLO0000J when J=0 :
ML00000

ML00000J when J=1 : |
ML09001

{4) When a Subscript is Attached to Real Number Type Dala
This will be equivalent to adding the value of i or j to the register number. For example,
if I=1, MF00000i will be the same as MF00001. MF00000j will be as follows when J=0
and J=1. Be careful
Upper word Lower word
MWO00001 MWO00000

MF00000J when J=0 :
MF00000

MF00000J when J=1: [
MF00001

MW00002 MwWO00001

(5) Example of Program Using a Subscript
The program shown in Fig. 3.2 is one in which the total for 100 registers from MWO00100
to MW00199 is set in MW00200 by the use of subscript j.

I 00000 == MW00200
FOR] =00000 to 00099 by 00001

F MW00200+MW00100j = MW00200
FEND

Fig. 3.2 Example of Program Using a Subscript

3-7

1

Function YO and Function Registeré

3.35
The inputs and outputs in a function referencing process correspond to the function registers
as shown in Table 3.6. Refer to the Control Pack CP-8200SH User's Manual (SIE-C879-40.1)
for details.

Table 3.6 Correspondence between Function I/O's and Function Regtsters

Function I/O . ' Function‘Register

Bit input The bit number increases continuously from XB00000O in the order
of bit input. (XB000000, XB000001, XBG00002, ... , XBOOOOOF)

Integer, double- The register number increases continuously from XW006001, XL00001,

length integer, and |and XF00001 in the order of the integer-doublé-lgngth integer-real

real number inputs | number input.
(XW00001, XW00002, XW00003, ..., XW00016)
(X1.00001, XL0O0003, XL00003, ... , XL00015)
(XF00001, XF00003, XF00005, ... , XF00015)

Address input The address input value corresponds to register No. 0 of the external
register. (Input value = MA0O100 : MW00100 = AW00000, MW00101
= AW00001...)

Bit output The bit number increases continuously from XBOOOOOO in the order
of bit output. (YB000000, YB0O00001, YB0C0002, ... , YBOOOOOF)

k Integer, double- The register number increases continuously from YW00001, YL000QO01,
length integer, and | and YF000O01 in the order of the integer, double-length integer, and
real number | real number cutput, respectively.
outputs (YW00001, YWO00002, YW00003, ..., YW00016)

(YL00001, YLOOOO3, YLOOOOS, ..., ,YL00015)
(YF00001, YF00003, YFO0005, ... , YF00015)
: FUNC-011

- F—F——— XBoooooo YB00000O ~ O

—— —— —— XB000001 YB000001 10]
MW00400 ======3 XW00001 YB000002 f——r f—O——r]

l——l b 1 XB000002 YLOOO01 l====z==) . MLO00410
MLO0402 ======>| XL00002 YLOO003 |=====2> ML00412
MWO00404 ======>| XW00004 YW00005 j=z==z===z) MWO00414
MW00406 ======>| XW00005 YLOOOO6 |======> MLO00416

' i AWQ00000
‘ MAQ1000

Fig. 3.3 Function Program

In the function program shown in Fig. 3.3, if

" AWOOOOO + AW00001 = AW00002" is written in the program inside the function, the
operation:

" MWO01000 + MW01001 = MW01002" is executed.

3. REGISTER MANAGEMENT METHOD

3.36 Programs and Register Referencing Ranges

Registers common to all DWGs

DWG H03 (Drawing)
Program

'System registers
(SB, SW, SL. SFonrmn)

Max. 500 steps

Registers unique to
each DWG

Constant data Max 16384 words {€
(#B, #W, #L, #Foopun)
Individual data Max. 16384 words

{B, DW, DL, Danmp)

Data registers
MB, MW, ML, MFonnmn)

N I

FUNC-000 (Function)
Program

Input registers
al!. I‘v; Iln I!‘ﬂﬂhh)

Function external register
Max. 500 steps (AB. AW, AL, AFnonmm)

|

@ Registers unique to
} each function)]

L

]
0
]
]
]
]
]
1
]
]
)
]
]
]
]
]
]
]
]
]
]
4
4
]
]
]
]
]
1
]
]

Qutiput registers
(OB, OW, OL. OFhhhh}

Function input registers 17 words
(XB, XW, XL, XFnunon)
Function output registers 17 words
(YB, YW, YL, YFoooon)
Function internal register
(ZB. ZW, ., ZFpmpon)
Constant data Max. 16384 words |

(#B. #W, #L, #Foonnn) :

P L LI

Constant registers

(CB, CW, CL, CFrmmnn)

-

Individual data Max. 16384 words
(DB. DW, DL, DFenmnn)

@ : The registers that can be used in common by the DWG's may be referenced from any
drawing or function.

@ : Registers that are unique to each drawing can only be referenced within that drawing.

(3 : Registers that are unigue to each function can only be referenced within that function.

@ : The registers that can be used in common by the DWG's and the registers that are unique
to each drawing may be referenced from a function by the use of the function external
registers.

3.4

341

34.2

3-10

Symbol Management

Symbol Management in the DWG's

All symbols used in the DWG are managed by the DWG symbol table shown in Fig. 3.7. Both
registration of symbols on the symbol table and designation of register numbers can be
performed on the symbol definition screen of the CP-717. Further, registration, deletion, and
modification of symbols as well as designation or modification of register numbers can be
done any time while a program is being prepared. A maximum of 200 symbols can be registered
for a single drawing. Refer to the Control Pack CP-717 Operation Manual (SIE-C877-17.4,

-17.5) for the method of defining DWG symbol tables,

- When an unregistered symbol is used during program preparation...

Since only the symbol will be registered automatically in the DWG symbol table, the
designation of the register number will become necessary after the program is prepared.

Table 3.7 DWG Symbol Table

No.

Register No_|

Symbol Size * Remarks

0 IB000GO {STARTPBL 1 The register number is a
hexadecimal expression.

1 |[OB00000 [STARTCOM 1 The register number is a

' o hexadecimal expression.

2 [MW00000 |SPDMAS 1

3 |MB000010 {WORK-DB | 16

4 |[MW00010 |PIDDATA 10

5 IMWQ0020 |LAUIN 1

6 MW00021 [LAUOUT 1

N

: If a program is prepared using such data conﬁgurations as arrays,
index process data, etc., define the sizes used in the respective data
configurations.

For example, if data is referenced as PLDDATA.1 and i takes on values
in the range 0 to 9, define the size as 10.

Symbol Management in the Functions
The symbols used in the functions are all managed with the symbol table, shown in Table 3.8.

The registration, deletion, and modification of a symbol and the designation and modification
of a register number are carried out in the same manner as in the DWG's.

Table 3.8 Function Symbol Table

No.[Register Noi Symbol Size * Remarks
0 | XB00000O | EXECOM 1
“1 | XW00001 | INPUT 1
2 1AW00001 | P-GAIN 1
3 {ABOGOOOOF | ERROR 1
4 | YB000000 | PIDEXE 1
5 |YW00001 ! PIDCUT 1
"6 | ZB000000 | WORKCOIL 4
7 |ZW00001 | WORK1 - 1
8 |ZW00002 | WORK2 1
N

*: If a program is prepared using such data configurations as arrays,
index process data, etc., define the sizes used in the respective data
configurations.

For example, if data is referenced as PIDDATA i and i takes on values
in the range 0 to 9, define the size as 10.

3. REGISTER MANAGEMENT METHOD

3.5 Upward Linking of Symbols and Automatic Number Allocation

3.5.1 Upward Linking of Symbols

The upward linking of symbols refers to the defining of symbols so that symbol names defined
in drawings of different hierarchical rank can be used to reference the same register number.
Ordinarily, a symbol that is defined for a certain DWG or function becomes unique to that
DWG or function program and cannot be referenced by other DWG's or functions.

However, by using the upward linking function for symbols, a symbol defined in a parent
drawing may be referenced by a child drawing as long as the drawings are process drawings of
the same type. The upward linking of a symbol is set at the Symbol Definition screen of the
CP-717. Refer to the Control Pack CP-717 Operation Manual (SIE-C877-17.4, -17.5) for details
concerning the setting method.

Table 3.9 Linkable Symbols and Symbol Table for Linking

Symbol Table | Parent Child |Grandchild
Symbol drawing | drawing | drawing
Symbols of a parent drawing X X X
Symbols of a child drawing O X b
Symbols of a grandchild drawing O @) x
Symbols inside a function X X X

(: Linkable X : Not linkable

3.5.2 Automatic Register Number Allocation

Automatic register number allocation refers to the setting of the head register number and
the automatic allocation of register numbers to symbols for which register numbers have not
been assigned.

Setting automatic allocation of register numbers can be performed on the symbol definition
screen of the CP-717. Refer to the Control Pack CP-717 Operation Manual (SIE-C877-17.4,
-17.5) for detailed procedures for setting them.

Table 3.10 Automatic Register Number Assignment

DWG Symbol Table |Automatic Number| g, o450 Symbol Table Automatic Number

Allocation Allocation
System register S O System register S O
Input regiter 1 O Input register 1 O
Output register O O Output register 0 O
Data register M O Data register M O
register # O # register # O
C register C O C register C @)
D register D O D register D O
—_ Function input register X X
— Function output register Y X
— Function internal register Z O
— Function external register A X

{1 Automatic number allocation possible
X : Autematic number allocation impossible

3-11

4. BASIC INSTRUCTIONS

4 BASIC INSTRUCTIONS

All of the instructions that can be used with CP-
9200SH are described in detail in this chapter.

4-1

4-2

[Arrangement of This Chapter |

In this chapter, the description of each instruction is arranged in the following manner.

[Format] Description of the operands and the form of the operands of the instruction.

[Description] Description of the functions of the instruction.

[Operation of the Register]

Shows the étorage status of the CPU internal registers.

The registers shown in Table 4.1 are provided inside the CPU. These are used to
perform user program processes.

1

AF | BjI1]| J

0101 x10O10O

(O : stored X : not stored
* . indeterminate)
{Stored or not stored depending on the case.)

A: A register, F: F register, B: B register, I : I register, J : J register

Table 4.1 CPU Internal Registers

Register

Usage

operations.

A register Used as a register for logic, integer, and double-length integer

F register |Used as a register for real number operations.

B register |Used for relay circuit operations

1 register Used as an index register (I).

J register Used as an index register (J).’

[Example(s)] Describes an example or examples of a simple program that uses the instruction.

4.1

Instruction with []

{Format]

[Description]

[Instruction]

4. BASIC INSTRUCTIONS

Instruction with [] |

A instruction with [] enables conditional execution according to the value of
the immediately preceding B register.

The instruction within [] is only executed when the value of the B register is
ON. [] can only be used for 1 instruction. A plurality of instructions cannot be
enclosed in a single []. If [] is to be used for a plurality of instructions, attach
{] to each instruction.

[Operation of the Register]

[Example(s)]

‘When the B register is OFF:

A|lF |B |1 dJ
ClOoO|C | OO0
When the B register is ON:
A|F | B I J
k| * * * #

(: stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

O: stored X : not stored
* :indeterminate
{Stored or not stored depending on the case.)

* : In accordance with the instruction within .

Example 1
EB000001 ¥B000011
MBODOO11 e
(SEE LOi]
L equivalent
¥BOO0001 NB0O0011
T -
TFON -
SEE L01
IEND
Example 2
(Hu¥000011 [+00100] [=>¥V00002]
$ equivalent
IFON
HHY00001 +00100 =N¥00002
IEND

4.3

: I Child Drawing Referencing Instruction —i

42

421

4-4

Program Control Instructions

Child Drawing Referencing Instruction (SEE)
[Format] - - SEE <Child drawing No. or grand-child drawing No.>

[Description]. The SEE instruction is used when referencing a child drawing from a parent
drawing or when referencing a grandchild drawing from a child drawing.
Referencing cannot be performed between drawings which differ in type. For
example, "SEE HO1" cannot be written inside DWG.L.

[Operation of the Register]

¥ : indeterminate

* * * - * *

[Example(s)] | sgp ap;

Start of execution of

AlFIB I J O stored X : not stored

(Stored or not stored depending on the cése.)

DWG.A01

child drawing A01

. End of execution of
: child drawing A01

DEND

422

4. BASIC INSTRUCTIONS

[FOR Structure Statement

FOR Structure Statement

[Format] FORV=AtoBbyC
Instruction sequence (processing program)
FEND

[Description] The instruction sequence surrounded by the FOR instruction and the
corresponding FEND instruction is repeated by the designated number of times
{N =(B - A+ 1)/C}. The variable V starts from initial value A and is incremented
. by C on each repeated execution. The instruction sequence is ended when V>B.
The following registers may be used for V, A, B, and C.

V: Any registers of the integer type, any register of the integer type
with subscript, and any subscript register (I, J).
A, B, C: Any registers of the integer type, any register of the integer type
with subscript, any constant or any subscript register (1, J).
B>A>0, C>0)

V=A

—

Instruction
sequence

I
V=V+C

<gE>=

=

To the next instruction
Fig. 4.1 Execution Control by the FOR Structure Statement

_I Depth of Structure Statements (Nesting) |

i

The FOR, WHILE, and IF structure statements may contain other structure
statements within themselves. This is called "nesting". A FOR, WHILE, or
IF structure statement can each be nested up to 8 times. The maximum
depth of a nested structure using FOR, WHILE, and IF statements is thus
restricted to 24 nests.

[Operation of the Register]
O: stored X : not stored

A F /B LI LJ | « jjdeterminate
% | * * * * {Stored or not stored depending on the case.)

[Example(s)] The total for 100 registers, from MWO00100 to MW00199, is stored in MW00200.

00000 == MW00200
FOR J =00000 to 00099 by 00001

[F MW00200 + MW00100j
FEND = MW00200

L WHILE Structure Statement l

4.2.3 WHILE Structure Statement

{[Format]

[Description]

WHILE
Instruction sequence 1 (judgment of repetition condition)
ON/OFF

Instruction sequence 2 (processing program)
WEND - ;

The instruction sequence 2, between WHILE and WEND is executed repeatedly
. as long as the conditions deﬁned by instruction sequence 1 and the ON (or

. OFF) instruction are satisfied. When the conditions are no longer satisfied,

instruction sequence 2 is not executed and the program proceeds with the
instruction next to WEND.
As shown in Fig. 4.2, the condition for execution of instruction sequence 2 ig

" determined by the condltlon of the B register immediately preceding the ON

(or OFF) instruction (ie. the results of instruction sequence 1).

. If, for example, the condition for execution is found to be not satisfied as a

result of the first execution of instruction sequence 1, the program proceeds

- with the instruction next to WEND without executing the instruction sequence

— —

Instruction Instruction
sequence 1 . sequence 1
e
=0FF
Instruction . Instruction
sequence 2 i sequence 2
; To the next instruction To the next instruction
{a) WHILE-ON-WEND {b) WHILE-OFF-WEND

'—{ Depth of Structure Statements (Nesting) F

Structure Statement Structure Statement

. fig'. 4.2 Control of Execution by the WHILE Structure Statement

. The FOR, WHILE, and IF structure statements may contain other structure
statements within themselves. This is called "nesting". A FOR, WHILE, or

"IF structure statement can each be nested up to 8 times. The maximum depth

‘ of a nested structure using FOR, WHILE, and IF statements is thus restricted
to 24 nests.

4-6

NOTE

- Write the program so that the condition part (instruction sequence 1) of the

' WEND structure statement will definitely be unsatisfied at some point. If the

repetition is continued endlessly and the program cannot proceed cut of the
" WHILE structure statement, the watchdog timer will be activated and the
: CPU will stop. .

" [Operation of 1;he Register]
TATF I8 T1 J 9 s stored X inot stored
: indeterminate
(Stored or not stored depending on the case.)

* * | % * *

4. BASIC INSTRUCTIONS

I WHILE Structure Statement |

[Example(s)] The total for 100 registers, from MW00100 to MW00199, is stored in MW00200.

{00000 =]
=>U¥00200

VHILE

1 < 00100

ON

HY00200 + M¥00100i =>HV00200

FI + 00001 =]

VEND

NOTE

Place an N.O. contact instruction (|- } if an ON (or OFF) instruction
is to be used after a coil instruction.

VHILE
180000 10001
A 1

MBO0O00O |

!BOE?OOO
N(OFF

YEND

A 1

4-7

IF Structure Statement |

4.2.4 IF Structure Statement

The IF structure statement can take one of two formats depending on whether or not an
exclusive condition exists. Although the two formats are described separately below, there are

no essential differences between these two.

(1) IF Structure Statement - 1

Instruction sequence (processing jarogram)

[Format] . |:IFON/IFOFF'

IEND

[Description] - When the IFON Instruction is Used
The instruction sequence between IFON and IEND will be executed if
the current value of the B register is ON and will not be executed if the

current value of the B register is OFF

When the IFOFF Instructlon is Used .

The instruction sequence between JFON and IEND will be executed if
the current value of the B reglster is OFF and will not be executed if the
current value of the B register 18 ON.

The process flows are shown in Fig. 4.3.

To the next instruction

{(a) IFON-IEND
Structure Statement

Instruction

Sequence

v
To the next instruction

{b) IFOFF-IEND
Structure Statement

‘ Fig. 4.3 Execution Control by the IF Structure Statement (1)

[Operation of the Register]

A|lF | B {1

* %

*
*

O stored X : not stored
® : indeterminate
(Stored or not stored depending on the case.)

[Example(s)] If MB000108 is ON, the contents of MWO00021 are set to 0.

| | umoppos

i
IFON

[{00000
IEND

=HN00021

4-8

4. BASIC INSTRUCTIONS

| IF Structure Statement

(2) IF Structure Statement - 2

[Format)

{Description]

IFON/IFOFF
Instruction sequence - 1

ELSE

Instruction sequence - 2

IEND

When the IFON Instruction is Used:

If the current value of the B register is ON, only instruction sequence 1
will be executed and instruction sequence 2 will not be executed. If the
current value of the B register is OFF, only instruction sequence 2 will
be executed and instruction sequence 1 will not be executed.

When the IFOFF Instruction is Used:

If the current value of the B register is OFF, only instruction sequence
1 will be executed and instruction sequence 2 will not be executed. If the
current value of the B register is ON, only instruction sequence 2 will be
executed and instruction sequence 1 will not be executed.

The process flows are shown in Fig. 4.4.

Instruction Instruction Instruction Instruction
sequence 1 sefjuence 2 sequence 1 sequence 2
| T
v v
To the next instruction To the next instruction
{a) IFON-ELSE-IEND {b) IFOFF-ELSE-IEND
Structure Statement . Structure Statement

Fig. 4.4 Execution Control by the IF Structure Statement (2)

-~ Depth of Structure Statements (Nesting)

The FOR, WHILE, and IF structure statements may contain other
structure statements within themselves. This is called "nesting." A
FOR, WHILE, or IF structure statement can each be nested up to 8
times. The maximum depth of a nested structure using FOR, WHILE,
and IF statements is thus restricted to 24 nests.

[Operation of the Register]

[Example(s)]

A F B I J (O: stored x : not stored
* :indeterminate
{Stored or not stored depending on the case.}

* * * * x*

The contents of MW00011 are set to 0 if MW00010 contains a positive
number and to 1 if MW00010 contains a negative number.

F-U¥00010 = 00000

IFON .

I-00000 =K¥00011
ELSE

I-00001 =Hv00011
IEND

4-9

IF Structure Statement [

Function Referencing Instruction (FSTART) I

425

4-10

NOTE
Place an N.O. contact instructiord F—)if an IFON (or IFOFF) instruction
is to be used after a coil instruction.

1B0DDO0 1BOOOOL HBOOO00O |
il 1 B ot 1
¥B000000
IFON(IiEFF)
' B0

Function Beférencing Instruction (FSTART)
[Format] FSTART

[Description] . The FSTART instruction is used to reference an user function or a system
! function from a parent drawing, child drawing, or user function. The function
definition of the referenced user function must be prepared in advance. System
" functions do not have to be defined by the user since they are already defined
by the system. ’

[Operation of the Register] - »
NS (O: stored X : not stored
A E B L d * : indeterminate
{Stored or not stored depending on the case.)

* % * * *

[Additional Note}

. When "FSTART " is input at the CP-717, the graphic display of the

* functions is displayed and the input of the function name is prompted. The
"FSTART" instruction itself will not be displayed on the screen. Refer to the

. Control Pack CP-717 Operation Manual (SIE-CB77-17.4, -17.5) for details on
the input method. -

4. BASIC INSTRUCTIONS

| Function Input Instruction (FIN) I

4.2.6 Function Input instruction (FIN)

{Format)

FIN

[Desecription] The FIN instruction is used to store input data into a function input register.
The forms of data input into a function register are shown in Table 4.2,

Table 4.2 Function Input Data Forms

Input Data Form

Input Designation™

" Description

Bit input

B-VAL

Designates the cutput to be of a bit type.

Usually, the —| | instruction or the —/}— instruction is used to reference
the function.

The bit data become the input to the function.

I.VAL

Designates the input to be of an integer type.

Usually, the |— instruction is used to reference the function.

The contents (integer data) of the register number designated with the
|— instruction become the input to the function.

Integer type input ~

I-REG

Designates the input to be the contents of an integer type register. The
number of the integer type register is designated when referencing the
function. The |— instruction is not necessary.

The contents (integer data) of the register with the designated number
become the input to the function.

Double-length
integer type input

1-VAL

Designates the input to be of a double-length integer type.

Usually, the |— instruction is used to reference the function.

The contents (double-length integer data} of the register with the number
designated with the |— instruction become the input to the function.

L-REG

Designates the input to be the contents of a double-length integer type
register.

The number of the double-length integer type register is designated when
referencing the function. The |- instruction is not necessary. The contents
(double-length integer data) of the register with the designated number
become the input to the function.

Real number type
input

F-vAL

Designates the input to be of a real number type.

Usually, the |- instruction is used to reference the function.

The contents (real number data) of the register with the number designated
with the |}~ instruction become the input to the function.

F-REG

Designates the input to be the contents of a real number type register. The
number of the real number type register is designated when referencing the
function, The | instruction is not necessary. The contents (real number
data) of the register with the designated number become the input to the
function.

Address input

Hands over the address of the designated register (an arbitrary integer

register) to the function. Only 1 input is allowed in the case of a user function.

* : Indicates the input designation at the CP-717.

[Operation of the Register]

A|F | B I
O10 |0
[Additional Note]

{O: stored X : not stored

dJ
O | O * :indeterminate

(Stored or not stored depending on the case.)

The graphic display of function inputs is displayed when "FIN " is
input at the CP-717 after designating the data. The "FIN" instruction itself
will not be displayed on the screen. Refer to the Control Pack CP-717 Operation
Manual (SIE-C877-17.4, -17.5) for details on the input method.

NOTE

It is recommended that I-REG, L-REG, or F-REG be used if the I/O data
are not of a bit type.

4-11

| Function Output Instruction (FOUT)]

4.2.7 . Function Output Instruction (FOUT)
[Format] FOUT .
[Description] The FOUT instruction is used to take out the contents of a function output
register as output data of the function. The forms of data output from a function

are shown in Table 4.3.

T Table 4.3 Function Output Data Forms

Qutput Data Form Output Designation* _ Description

Designates the output to be of a bit type.

B-VAL " | Usually, the —O——f instruction is used to reference the
function. The output data (bit data) are stored in the register

with the number designated with the —O—| instruction.

Bit output

- . Designates the output to be of a Integer type.

, 1-VAL Usually, the = instruction is used reference the function.
The output data (integer data} are stored in the register
with the number designated with the = instruction.

Designates the output to be the contents of an integer type
register.

The number of the integer type register is designated when
I-REG . referencing the function.

The = instruction is not necessary.

The output data (integer data) are stored in the register
s . with the designated number.

Integer type ou*.put

- Designates the output to be of a double-length integer type.

: - - Usually, the = mstruction is used to reference a function.
L-VAL The output data {double-length integer data) are stored in

v the register with the number designated with the =

Double-length integer . l : instruction.

type output - ‘ Designates the output to be the contents of a double-length
. ' integer type register.

L-REG The number of the double-length integer type register is

. designated when referencing the function. The =

instruction is not necessary. The output data (double-length

data} are stored in the register with the designated number.

. Designates the output to be of a real number type.
F-VAL Usually, the = instruction is used to reference a function.
g ’ The output data (real number data) are stored in the register
4 with the number designated with the = instruction.

Real number type
Designates the output to be the contents of a real number
output .)) , type register. The number of the real number type register
F-REG is designated when referencing the function.
- The = instruction is not necessary. The output data (real
numbl;er data) are stored in the register with the designated
number. .

*: Indicates;_the output designation at the the CP-717.

[Operation of the Regisfer]_

O: stored x : not stored
* : indeterminate
{Stored or not stored depending on the case.)

B-VAL
I1-VAL
I-REG
L-VAL
1-REG
F-VAL
F-REG

OlO[0]x (O] x|Of»
oxolclolclo]=
oolololo]x|=
ololo|olc|o o=
ololololotoio] =

B

4-12

4. BASIC INSTRUCTIONS
I Function Qutput Instruction (FOUT) l

[Additional Note] .r;

{Example(s)]

The graphic display of function outputs is displayed when "FOUT "
is input at the CP-717 after designating the data. The "FOUT" instruction
itself will not be displayed on the screen. Refer to the Control Pack CP-717
Operation Manual (SIE-C877-17.4, -17.5) for details.

FUNC-030
| MBOOOO0O INPUT-1 OUTPUT-1{ 0B0Q0OO |
1 [Cowd I
IN0010 =====> {INPUT-2 OUTPUT-2======> W¥00200

NBOD00O1 INPUT-3 OUTPUT-3| MB00Q021

20 B ol
¥L0001E ======>1 INPUT-4 OUTPUT-4 p======> NL00201

INPUT-5

MAQ0100

Table 4.4 shows the function I/O data defined by function definition in the
program example above.

Table 4.4 Function VO Data Forms

Input Data| Data Form Output Data|Data Form
INPUT-1 | B-VAL OUTPUT-1 |B-VAL
INPUT-2 | I -REG QUTPUT-2 |1 -REG
INFUT-3 | B-VAI OUTPUT-3 |B-VAL
INPUT-4 | L- REG OUTPUT-4 |L -REG

NOTE
It is recommended that I-REG, L-REG, or F-REG be used if the I/O data are
not of a bit type.

Table 4.5 shows the correspondence relationships between the 1/0 data and
the function I/O registers when the I/0 data are referenced within the main
body of the function.

Table 4.5 /O Correspondence Relationships

Referencing within the Main
Input Data Body of the Function Output Data
Function input | Function Qutput
Register Register
B register (=MB000000) | XB000000
IW0010 XW00o001
B Register (=MB000001) | XBO0GOO01
ML00011 XL.00002
MWO00100 AW00000
MW00101 AWO00001
ML00102 AWO00002
MB(01040 ABQOQ0040
YBOO0000 B Register (=OB0D0OD)
YW00001 MW00200
YB000001 B Register (=MB000021)
YW00002 ML00201

4-13

[Comment Instruction (COMMENT) |

4.2.8

Comment Instruction (COMMENT)
Comments can be written at any position in the DWG program or user function program.
Alphanumeric characters may be used for comments.

[Format] ncharacter string"

[Descrlptmn] The character string enclosed with " " is treated as a comment. Since this is
merely a comment, it is not executed as an instruction. Be aware that it becomes
the target of the number of steps in the user program.

A character string of 12 characters will be equwalent to 1 step (1 basic

instruction).

[Operation of the Register]

(O stored X : not stored

B |1 d
% g Ol0o1 0O * - indeterminate
(Stored or not stored depending on the case.)
NOTE

Do not prepare a program that there is a comment instruction in the middle
of branching in a series of sequence instruction groups.

T

<Example 1>
| SBO00004 DBO00CO1 . .
: ' " | pBoooco2 [- ‘
: S State there is a branch
: " ABC 7 «- Comment instruction .
SB000004 DBO0OOCS 1
I 1T
Wrong
i
; - ; | SB000OO4 133000001 , :
: I A o
' l DBD 002 I
~ St.ate there is no branch
" ABC “ < Comment instruction
SBO(I)(I)O(H DBO0OO0S
= 11 . O- 1
Correct

4-14

4. BASIC INSTRUCTIONS
| Comment Instruction (COMMENT) I

<Example 2> _
| SBO00004
1

DBO??OOI

@

Dsoogléoz [-
—ts DBOD000S

Correct.

In the diagram above, do not insert a comment instruction

at @.

| SRO0O0004 DBCOOOOT

A i o |
r I 1 I
DBOO0O02
ooz |
“ ABC * +« Comment instruction
DBQEIOOOS |
o 1
‘Wrong

<Example 3> Do not prépare a program that there is a comment
instruction between contact instructions.

DPBOOQODD
|_—
~ ABC *
i DBO('J(I)OOI DBO0ODOOS
= 1 ¥ S 1
Wrong
l
~ ABC *
DBO('J(!JOOO DB?(I)OOOI DBOOD0OS |
i ik 1 - O 1
Correct
or
i DBO?QOD’O DBOO'QOUQ |
I 11 ol 1
DBOO(I)DOI DBOE)QOOS]
f O i
Correct

4-15

I Expantion Program Execution Instruction (XCALL) I

429 Expansion Program Execution In§truction (XQALL)
[Format] XCALL <type of expansion program>

[Description] The XCALL: instruction is used to execute an expasnsion program. ,
Expansion programs refer to the table format programs. There are 4 types of

. table format programs as shown in Table 4.6. With the CP-9200SH, these
expansion programs are converted into ladder programs for execution. A
converted ladder program is executed with the XCALL instruction. Although
a plurality of XCALL instructions may be used in one drawing, the same
expansion program cannot be called more than once.

Tahle 4.6 Types of Expansion Programs

_Symbol . Program Type
MCTBL Constant table (M register)
I0TBL 1/0 conversion table
' ILXTBL Interlock table
ASMTBL Parts composition table

[Operation of the Register] -
AlF B | I J (O: stored X : not stored
® :indeterminate
*
O * © * (Stored or not stored depending on the case.)

[Example(s)]‘ XCALL ILKTBL

| DWGaxx . Expansion Conversion Program
XCALL" ILKTBL XPROG ILKTBL
XPEND

program cannoct be

The conveted ladder
viewed at the CP-717.

4-16

4.3

4.3.1

4. BASIC INSTRUCTIONS

Continuous execution type direct input instruction (INS) !

Direct I/0 Instructions

The direct I/0 instructions are used to execute inputs and outputs in an user program
independent of the system I/Q (batch input/batch output). An input or output is carried out at
the point of execution of the direct I/0 instruction. The subsequent instruction is not executed
until the I/O operation has been completed.

Continuous Execution Type Direct Input Instruction (INS)

[Format] [Parameter/head address of the data table]

INS [Register address {(except for #/C)
Register address (except for #/C) with subscript

fDescription] The INS instruction conforming to previously set parameter table contents,
continuously performs direct input to a single module. The only modules that
can apply direct input are the LI0-01/200010. If no error at all occurs, B register
is OFF. If an error occurred in even a single word, B register turns ON. During
operation, interruption by the system is prohibited.

Table 4.7 INS Instruction Parameter/Data Table

ADR| Type | Symbol Name Specifications In:;ut
Qutput
0 | W [RSSEL |Module designation 1|Designation of module for performing input N
1 W IMDSEL|Module designation 2{{The details are described (1) and (2) below.) | IN
2 | W [STS Status Status for each word output with bit response | QUT
3 | W IN Number of words Designation of number of continuous input words | IN
4 | W | Input data Outputs the input data. OUT
. If there is an error, 0 is stored. . .
N+3| W [IDN |Inputdata N OuUT
* Method of RSSEL and MDSEL Settings
(1) RSSEL Designates the rack/slot where the target module
is mounted.
Hexadecimal expression: xxyyH
xx =rack number (01, =xx=04)
yy = slot number (00, =yy=0D,)
However, designate the mounting rack/slot as:
LIO-01: Mounting rack/slot number on LIO-01
itself .
200010: Mounting rack/slot number on 2000I0IF
module connected to the target 200010
rack
{2) MDSEL

For the LIO-01: Designate the input data offset for the internal
LIO-01 module.

For the 2000I0: Designates the rack number/slot number/input
module type in the 200010 rack of the target

module.
F CB 87 43 0 ..
a ' b : c : d Hexadecm:li)lédH
a; Input module type 0: Diserete input module

1: Register input module
b: Rack number (1 =b = 4)
c: Slot number (1 =S¢ =9)
d:Dataoffset (0 =d =7

4-17

| Continuous execution type direct input instruction (INS) |

Designation of RSSEL and MDSEL in a system configuration shown below is

explainedinex D toex ® .
_ CP-9200SH D
01 : 9, 13
RACKH1 [FS [CPU L E
0 i
F
System b
012, 1 eSS
' RACK#2 [p§ L 2 : '
. 1 0 E
0 0 X
q 1
H F
200010 bus ® L)
' - 123-- s%Y o
. 3 BB
RACI#1 ! B[E
2 38
} ol
0
123- 45 9
75 B8
RACK$2Z i HH
.13 77
oo
- 1 o011
o
w R
oD

exD
ex(®
ex®@

ex @)

_ ex®

ex(®

LIO-01 (RACK1/SLOT9) First word is input
RSSEL=0109H MDSEL~0

LIO-01 (RACK2/SLOT2) Second word is output
RSSEL=0202H MDSEL=1

B2501 (Discrete input) (RACK1/SLOTS) connected to 2000I10TF

(RACK2/SLOT11) ~ First word is input
RSSEL~=020BH MDSEL=0160H

B2701 (Register input) (RACK2/SLOTS5) connected to 2000I01F

(RACK2/SLOT11) Fourth word is input
RSSEL~020BH MDSEL~-1254H

* B2500 (Discrete output) (RACK1/SLOTS5) connected to 200010IF

(RACK2/SLOT11) First word is input
RSSEL=020BH MDSEL=0150H
B2700 (Register output) (RACK2/SLOT4) connected to 200010IF
(RACK2/SLOT11) . Seventh word is input
‘RSSEL=020BH MDSEL=124TH

[Operation of the Register]

A

F

(O : stored X : not stored

1

G

O

* :indeterminate

B I
X (Stored or not stored depending on the case.)

J
O |0

[Example(s)]’ Data input from LIO mounted at rack 2, slot 4.

- H0204 : . =MW00100

o = MW00101

1 = MW00103
INS MA00100

_ * Input data stored in MW00104.

4-18

4. BASIC INSTRUCTIONS

| Continuous execution type direct output instruction (OUTS)|

4.3.2 Continuous Execution Type Direct Output Instruction {OUTS)

[Format)
OUTS

[Description]

[Parameter/head address of the data table]

Register address (except for #C)
Register address (except for #C) with subscript

The OUTS instruction conforming to previcusly set parameter table contents,
continuously performs direct output to a single module. The only module that
can apply direct output is the LI0-01/200010. If no error at all occurs, B register

is OFF. If an error occurred in even a single word, B register turns ON. During

operation, interruption by the system is prohibited.

Table 4.8 OUTS Instruction Parameter/Data Table

ADR| Type [Symbeol Name Specifications lng-ut
Output
0 | W |RSSEL |[Module designation 1|Designation of module for performing output | IN
1 | W IMDSEL|Module designation 2|(The details are described (1) and (2) below.) N
2 | W_|STS Status Status for each word output with bit response | OUT
3 | W IN Number of words Designation of number of continuous output words | IN
4 | W |[OD1 [Qutputdatal Setting output data IN
N+3] W [ODN |Qutputdata N IN

* Method of setting RSSEL and MDSEL is the same as for INS,

[Operation of the Register]

[Example(s)]

(O: stored X : not stored
* :indeterminate
(Stored or not stored depending on the case)

AI|lF [B [T [d
OlOo | x |O|C

Two words output to LIO-01 mounted at rack 3, slot 10.

— HO30A = MW00200

o = MW00201

2 , = MWO00203
Qutput data 1

- xxxxx = MW00204
Output data 2

OUTS MAO00200

4-19

| N.O. Contact Instruction (4) |

4.4 Sequence Circuit Instructions
The circuit elements shown in Table 4.9 are used in combination to prepare sequence circuits.

Tahle 4.9 Sequence Circuit Elements

No. Sequence Circuit Element Symbol . Remarks
1 N-O. contact .mstrucr..lon b Connection indication elements
: goi oolnt.act 1.n.structmn —_t (1) Branching -
. (2) Parallel connection point ~F
4 Set coil . T HsH -
(3) Paraliel connection)
5 Reset coil - 4RrH ;
6 Rising pulse —=
7 Falling pulse ’ e
8 On-delay timer (10ms unit) I F
) Off-delay timer (10ms unit) 4
10 On-delay timer (1s unit) e
11 Off-delay timer (1s unit) 4+

4.41 N.O. Contact Instruction (—{}-)

[Format]
Any bit type register
Any bit type register
with subscript
l I

1

[Descrlptlon] The N.O. contact instruction sets the status of the B register to ON if the value of t]
referenced register is 1 {ON) and to OFF if the value of the referenced register is

(OFF).

[Operation of the Register]

AI|F |B
© |0 | x

J {: stored X : not stored
o0 * . indeterminate
(Stored or not stored depending on the case.)

o]

[Example(s)] When MB000100 becomes ON, MB000101 becomes ON.

| MBOIOIOIOO- MB000101 |

I L O— !
MB000100 OFF »

S I SR I
MB000101 OFF -

4-20

§.4.2

443

4. BASIC INSTRUCTIONS

l N.C. Contact Instruction (-4~)
L Coil Instruction (—cH)

N.C. Contact instruction (4+)

Any bit type register
with subscript

/

[Description] The N.C. contact instruction sets the status of the B register to OFF if the value of the
referenced register is 1 (ON) and to ON if the value of the referenced register is 0
(OFF).

[Format] [Any bit type register }

[Operation of the Register]

AJF B |1 J (O :stored X :not stored
D10 [x O] O | * :indeterminate
(Stored or not stored depending on the case.)

[Exarﬁple(s)] When MB000100 becomes ON, MB000101 becomes OFF.

l MB()I(}MO() MB000101 |

1 ¥i S 1
| L 1
MB000100 OFF
e L] LT
MB0600101 OFF

Coil Instruction { —1)

[Format] Any bit type register

(except for # and C registers)
Any bit type register with subscript (except for # and C registers)

oy J
o 1

{Description] The coil instruction sets the status of the referenced register to 1 (ON) if the status of
the immediately preceding B register is ON and to 0 {OFF) if the status of the
immediately preceding B register is OFF.

{Operation of the Register]

AJ|JF BT |d
OO | x| O] O

O : stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

[Example(s)] When MB000100 becomes ON, MB000101 becomes ON.

| MB()I(}0100 MB000101 |

! LA A 1

w— | LT 1
MB00X100 OFF

om— LT 1L
MB000101 OFF

4-21

[Set coil / Reset coil instruction (-{SH /—-{RH) |

444 Set Coil/ Reset Coil linstruction ({SH/—{RH)

t . . . - ‘ .
(Format] o Any bit type register Reset] Any bit type register

coil | (except for # and C registers) coil | (except for # and C registérs)
Any bit type register with subscript Any bit type register with subscript
(except for # and C registers) (except for # and C registers)
. FS'I | rR1)
: 2] ! - 1By 1

[Description] The set coil instruction turns the output ON when execution conditions are satisfi
and maintains that ON status. Conversely, the reset coil instruction turns the out
OFF when execution conditions are satisfied, and maintains that OFF status.

[Operation of the Register] .
A T F | B 71 O:stored X :not stored
ololxlolo * :indeterminate '

: i (Stored or not stored depending on the case.)

=i

[Example(s)] .

<Example 1> Case where the same output destination is designated multiple times.

* MBOOOOD 0
| R] —lSl
1 OB
11 o }l]i
MB0G0003 0B00O00
{t iR}

- The above example acts as in the graph below.

. ‘IBOOOOOO—Q—%

: ¥B000CO01
. NBODODOZ : %
N KBOO0SO3 ——

@

(1) When OB00000 is OFF, with the “set ¢oil" instruction, OB0000C turns ON.
(2) When OB00000 is ON, with the "reset coil" instruction, OB00000turns

4-22

1.4.5

4. BASIC INSTRUCTIONS

[Set coil / Reset coil instructions ({SH/ {RH)

<Example 2> When all execution conditions are ON.

| Rising Pulse Instruction (—=)

1 Old{)
This part of the program is pro-
O_lw ____________________________ cessed assuming OB000OO is
B ON.
L
MB0O00001 0!
o i
L] OB00000 is processed as OFF.
in - ° {5}
[] OB00000 is processed as ON.

During operation processing, the contents of the output are rewritten with each

step.

In the above case, OBO000O is ultimately ON.

Rising Pulse Instruction (——)

[Format)]

[Description]

Any bit type register (except for # and C registers) '
Any bit type register with subscript (except for # and C registers)

£

With the rising pulse instruction, when the status of the immediately preceding B register
changes from OFF to ON, the status of the B register turns ON and stays ON during

one scan. The designated register is used for storage of the previous value of the B
register.

[Operation of the Register]

[Example(s)]

(O: stored X : not stored
* . indeterminate
{Stored or not stored depending on the case.)

A|F |BI1I [|Jd
OlOoxXx [|C|O

When 1B00001 turns ON from OFF, MB000101 turns ON and stays ON during 1 scan.
MBO000100 is used to store the previous value of IBO0001.

—)

1B000O1 MBO0100 MB00O101 |
I——| | 2] O

S I A I
1IBO0001 OFF

w1 L[L
MB00010 OFF

ON

MB000101 OFF l? FI

1scan

1scan

4-23

Rising Pulse Instruction (=)

Falling Pulse Instruction {(—1—)

446 Falling Pulse Instruction (——)

[Format]

[Description]

Table 4.10 Register Status with Fﬁsing Puise Instruction

Input : . Result
MB000100 MB000100
-TB000OY [(Previous value of IBOO001) {IB00001 stored) MB000101
OFF = | OFF OFF
OF OFF

ON

'NOTE ‘
‘In the above example, the instruction is used not for rise detection of MB000100 by
‘is used for rise detection of TBO0001. MB000100 is used only for storing the prevxm
1value of IBO0001.

(Please be careful not to make a mistake.

Any bit tyﬁe register (except for # and C registers) '
Any bit type register with subscript (except for # and C registers)

2

With the falling pulse instruction, when the status of the immediately preceding B
register changes from ON to OFF, the status of the B register turns ON and stays ON
during 1 scan. The designated register is used for storage of the previous value of the
B register.

[Operation of thé Register]

{Example(s)]

4-24

AJF |B I J 9! E‘_.bored X_:,not stored .
oOJolx] lolo : indeterminate
: - (Stored or not stored dependmg on the case.)

When 1B00G001 turns OFF, MB000101 turns ON and stays ON during 1 scan.
MBO000100 is used to store the previous value of IB00001.

R

| IB00001 MEB000100 MB000101 ' |
| |- T O—]

, w11
IB0O0O01 OFF C

w1
MB000100 OFF ,

ON ' : '
'MB000101 OFF — [S

4. BASIC INSTRUCTIONS

] Falling Pulse Instruction (—}—)
[On-delay Timer Instruction: unit of measurement=0.01 seconds {({ })

Table 4.11 Register Status with Falling Pulse Instruction

Input Result
MB000100 MB000100
IB00001 |(Previous value of IBOO0O01) (IB00001 stored) MB000101
OFF OFF OFF OFF
ON OFF ON OFF
ON ON ON - OFF
NOTE

In the above example, the instruction is used not for fall detection of MB0O00100 but
is used for fall detection of IB0O0001. MB000100 is used only for storing the previous
value of IBO0001.

FPlease be careful not to make a mistake.

A7 On-delay Timer Instruction: unit of measurement=0.01 seconds (' -)

[Format] 'Set value Count value}l
Set value : constant, any integer type register, or any integer type register with
subscript (0 to 655.35sec : in 0.01sec unit)
Count value: any integer type register (except for # and C registers), any integer type
register with subscript (except for # and C registers)

[Description] With the on-delay timer instruction, the time is counted while the status of the
immediately preceding B register is ON. The status of the B register becomes ON
when "Count value = Set value”.

The timer operation is stopped when the status of the immediately preceding B register
becomes OFF in the middle of counting. When the B register turns ON again, the
counting is started from the beginning (0.00s).

A value equal to the actual counted time X 100 is stored in the count register.
The on-delay timer instruction (4 }) counts when the instruction is executed.
Thus, exercise caution when using it in IF, WHILE, or FOR statement.

(1) When used in IF structure statement.

MB000000
| i
I 1!

IFON

. Timer O
MB000100 ¢ MB000101
—| {1500 MWO00011] o———]
IEND

In the above example, when MB00000O is OFF, the instruction of timer @) is not
executed, accordingly time is not counted. The time operation remains stopped.

4-25

| On-delay Timer Instruction: unit of measurement=0.01 seconds (' FM

(2) When used in WHILE structure statement

o . ' =1
WHILE
 I-< 00100 -

O:N Timer @

MB000100 ' MB000101

—F [500 MWoo011 | O
INC 1 '

WEND

Instruction
sequence (O

In the above example since instruction sequence @ is executed 100 times (03
=099), the timer @ is also executed 100 times. Thus, the time is counted for 1(
X scan time set value, so time is counted faster than real time.

(3) When used in FOR structure statement -

lMBOOOOI(')O
.

FOR I=000000 to 00099 by 00001

Timer O -
MB000100 MB000101
F—k [5.00 MWo00011 } O {
» FEND

Instruction
sequence O

In the above example; since instruction sequence (@ is executed 100 times (0=
=99), the timer (D is also executed 100 times. Thus, the time is counted for 1(
X scan time set value, so time is counted faster than real time.

[Operation of the Reglster]

‘A JF | B d
C{o | x | OO0

(O: stored X : not stored
* :indeterminate

[

[Example(s)]

MB060100 MB000101
b (7500 MW00OL1) -0

S/ 1

MEB000100 OFF — |

ON & .
MB000101 OFF _] |

MW00011 - 0

{T's = scan set value)
NOTE

Set an unused register.

4-26

(Stored or not stored depending on the case.)

MWO00011 works as timer count register. Thus, it is essential that there is no overlag

4.8

4. BASIC INSTRUCTIONS

| Off-delay Timer Instruction: unit of measurement=0.01 seconds ({ +)]

Off-delay Timer Instruction: unit of measurement=0.01 seconds { -{ T)

[Format)]

[Description]

— Set value Count value'}

Set value : constant, any integer type register, or any integer type register with
subseript (0 to 655.35sec : in 0.01sec unit)
Count value: any integer type register (except for # and C registers), any integer type

register with subscript (except for # and C registers)

With the off-delay timer instruction, the time is counted while the status of the
immediately preceding B register is OFF. The status of the B register becomes OFF
when "Count value = Set value".

The timer operation is stopped when the status of the immediately preceding B register
becomes ON in the middle of counting. When the B register turns OFF again, the
counting is started from the beginning (0.00s).

A value equal to the actual counted time<100 is stored in the count register.

With the off-delay timer ingtruction, the time is counted when the instruction is executed.

"Therefore, pay attention when using the off-delay instruction in IF, WHILE, and FOR

structure statement.
(1) When used in IF structure statement
: MBOOOIOLOO
I 17
IFON)
: Timer @
MB000100 / N MB000101
— [500 MWo00011 | O 1
IEND

In the above example, when MB000000 is OFF, the instruction of timer @ is not
executed, time is not counted. The timer operation remains stopped.

(2) When used in WHILE structune statement.

- o =1
WHILE

I < oo100
ON

Timer Q)

MB000100 /. MB00o101
= [500 MWo00011 " }—O |

Instruction
sequence (D

INC 1

WEND

In the above example, since instruction sequence) is executed 100 times (0=1I
=99), the timer @ is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time.

(3) When used in FOR structure statement

- MB00000O
| Tl
FOR I=00000 to 00099 by 00001
: Timer Q)]
MB000100 <, MB000101 gﬂ;ff;f;‘%
| 1 { 5.00 MWoo0011 | O |

—l
FEND
In the above example, since instruction sequence @ is executed 100 times (0=1

£99), the timer @ is also executed 100 times. Thus, the time is counted for 100
X scan time set value, 30 time is counted faster than real time. 497

| Off-delay Timer Instruction: unit of measurement=0.01 seconds { 4 F) [

4-28

[Operation of the Register]| ‘
A JF (B |1 dJ
OlOo | x |O|O

(O:stored X : not stored
* :indeterminate
{Stored or not stored depending on the case.)

[Example(s)] - I : ,
A MB000100 ' MB000101 ’
I_| [_ [500 MWO0011] O |

ON
* MB000100 OFF —— |
ON

MB000101 OFF | oL

C 500 — - /
MWO00011 . © ‘ :

""" I 5.00s-Ts

(T's = scan set value)

NOTE
In the above example, MW00011 functions as the count register of the timer. B
sure to set an unused register for the count register so that an overlap will ng
occur. i

4.9

4. BASIC INSTRUCTIONS

I On-delay Timer Instruction: units of measurement=1 second (£ I-) I

On-delay Timer Instruction: unit of measurement=1 second (L£F)

[Format)

{Description]

-{*Set value Count value }-

: constant, any integer type register, or any integer type register with
subscript (0 to 65535sec : in 1sec unit)

Count value: any integer type register (except for # and C registers), any integer type '

register with subscript (except for # and C registers)

Set value

With the on-delay timer instruction, the time is counted while the status of the
immediately preceding B register is ON. The status of the B register becomes ON
when "Count value = Set value".

The timer cperation is stopped when the status of the immediately preceding B register
becomes OFF in the middie of counting. When the B register turns ON again, the.
counting is started from the beginning (0s).

A value equal to the actual counted time X1 is stored in the count register.

With the off-delay timer instruction, the time is counted when the instruction is executed.
Therefore, pay attention when using the on-day instruction in IF, WHILE, and FOR
structure statement.

(1) When used in IF structure statement

MB000000

B 4

IFC;)N Timer @
MB000100 . ¢’ MB000101
— ["s00 MWooo11] O =
IEND

In the above example, when MB000000 is OFF, the instruction of timer @ is not
executed, time is not counted. The timer operation remains stopped.

{2) When used in WHILE structure statement.

- o =1
WHILE
ik I < 00100
ON

: Timer@
MB000100 s Y MB000101
{ 1 500 MWo00011 | O |

Instruction
sequence @

INC 1

WEND

In the above example, since instruction sequence (U is executed 100 times (0=I
=99), the timer (D is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time.

(3) When used in FOR structure statement.

lMBOOO(I)(I)O
| {
FOR 1=00000 to 00099 by 00001

: Timer @)
MB000100 . v MB000101 Instruction
— 500 Mwooo11 } O | | | sequence

FEND

In the above example, since instruction sequence (U is executed 100 times (0=1
=99), the timer @ is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time. 4-29

{

I

On-delay Timer Instruction: unit of measurement=1 second { *) I

4-30

[Operation of the Register]

{: stored X : not stored

A|F B 11 dJ i . .
O 101X o1 0 :indeterminate)
- (Stored or not stored depending on the case.)
[Example(s})]
MB000100 . MB000101
| —|}——{" 500 MWo0011

ON I '
uB000100 OFF— . I

(Ts = scan set value)

NOTE
In the above example, MWO00011 functions as the count register of the timer. B
sure to set an unused register for the count register so that an overlap will no
oceur.

4.10

4. BASIC INSTRUCTIONS

Off-delay Timer Instruction: units of measurement=1 second (4 *}) |

Off-delay Timer Instruction: unit of measurement=1 second (- °F)

[Format]

[Description]

— Set value Count value "}

Set value : constant, any integer type register, or any integer type register with
subscript (0 to 65535sec : in 1sec unit)
Count value: any integer type register (except for # and C registers), any integer type

register with subscript (except for # and C registers)

With the off-delay timer instruction, the time is counted while the status of the
immediately preceding B register is OFF. The status of the B register becomes OFF
when "Count value = Set value".

The timer operation is stopped when the status of the immediately preceding B register
becomes ON in the middle of counting. When the B register turns OFF again, the counting
is started from the beginning (0s).

A value equal to the actual counted time X1 is stored in the count register.

With the on-delay timer instruction, the time is counted when the instruction is executed.
Therefore, pay attention when using the on-delay instruction in IF, WHILE, and FOR
structure statement.

(1) When used in IF structure statement.

MB000000
l 11
'IFON '

: Timer @
MEQ00100 /s MB000101
—] [500 MWO00011 | O |
IEND

* In the above example, when MB00000O is OFF, the instruction of timer @) is not
executed, time is not counted. The timer operation remains stopped.

(2) When used in WHILE structure statement.
- o
WHILE

- T < 00100
ON

=1

Timer D Instructi
struction
7 MB000101 sequence @

MB000100
'] [500 MWo00011 }——O }

. I

INC I

WEND

In the above example, since instruction sequence @ is executed 100 times (0 =1
=99), the timer Q) is also executed 100 times. Thus, the time is counted for 100
X scan time set value, so time is counted faster than real time.

(3) When used in FOR structure statement

- MB000000
[11
FOR 1=00000 to 00099 by 00001
: Timer @ Instruction
MB000100 <, MBO000101 sequence D
——| [500 MWo0011 | O
FEND

In the above example, since instruction sequence D is executed 100 times (0 =1
= 99), the timer @ is also executed 100 times. Thus, the time is counted for 100

X scan time set value, so time is counted faster than real time.

4-31

[- Off-delay Timer Instruction: unit of measurement=1 second ({ *}-) |

[Operation of the Reg:ister] _
(O:stored X : not stored

A|FI|B J
ololx1olo0O * :indeterminate .
' (Stored or not stored depending on the case.)

eaef

[Example(s)] - . S :

MB000100 ., MB000101
| tb———— 500 MWo0011 "} oO——

. oN ' -

¥BOOO100 OFF— = - I
ON S ' .

HBOOO101 orp—f I

: 500‘—|
w0001l 0-

NOTE
In the above example, MWO00011 functions as the count register of the timer. H
sure to set an unused register for the count register so that an overlap will n

occur.

(Ts = scan set value)

4-32

4. BASIC INSTRUCTIONS

Examples of Relay Circuit Combinations

Example of a Series Circuit
In the example below, relays are connected in series and their logical product is
output to a coil.

| MBOOD0OO IBOPDO1 MBOODIOA OBOQIOO |
| LA} L4l 11 N

Examples of Branched and Parallel Circuits
The branch indication element is used to branch the contents of the B register to
several parts. The paralle] connection indication element is used to determine the
logical sum (OR) of a plurality of relays.
In the exampies below, relays are connected in series and in parallel and the result
is output to a coil or to coils.
(Example 1} Simple example of branching and parallel connection

Branch Parallel connection

| WB0DO00O | 1B0GOO! | WBODDIOA OBOOLO0
12 L 1

’ 1B0(02

(Example 2) Example in which several branches and parallel connections are used
Branch Parallel connection Branch

MBOO0000 | 1BOODO!) HBOD10A lonoo;go
1 L4J | R] el

1309902 MBOO10OF
¥i _O_
Parallel connection

Branch

1BO))03

Example of a Sequence Circuit with Subscript
A relay number may be used with a subscript.
In the example below, the logical product (AND) of relays MB000000 to MBOOOOOF
is determined and set in MB000010.

HB000000 NB000010
FOR a I=00000 to 00015 by 00001 h
MB0OO000: WB0OOO10 ¥B000010
i 11 S
FEND

4-33

| AND Instruction |

4.5 Logical Operétion"lnstructions
The AND (A), OR (V), and XOR (£B) instructions are available as logical operation instructions.
4.5.1 AND Instruction

{Format) A Any integer type register
'| Any integer type register with subscript
Any double-length integer type register- :
.| Any double-length integer type register with subscnpt
Subscript register
Constant

{Description] The AND instruction outputs the logical product {AND) of the immediately preceding
A register and the designated reglster to the A reg15ter

-b1t Truth Table for the Logical Product (AND AAB= C)

A|IB|C |
Q0010
0|10
100
1011

[Operation of thé Register] e) '
. O: stored X : not stored

ALF | B |1 J * :indeterminate
X C 19 10 (Stored or not stored depending on the case.)

[Example(s)] The logical product of MW00100 and a constén'; is stored in MW00101.

. FMW00106 A HOOFF - == MW00101
(H1234) : (HOOFF) . (H0034)-

4-34

4. BASIC INSTRUCTIONS

OR Instruction
XOR Instruction

5.2 OR Instruction

[Format] v | Any integer type register
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Subscript register
Constant

[Description] The OR instruction outputs the logical sum (OR) of the immediately preceding A register
and the designated register to the A register.
1-bit Truth Table for the Logical Sum (OR: AV B=C()

A|B|C
0,010
0l1]1
1101
1 11(1

[Operation of the Register]
A|F IB |1 J O: stored X : not stored

* :indeterminate
X10]01010 (Stored or not stored depending on the case.)

[Example(s)] The logical sum of MWO00100 and a constant is stored in MW00101.

FMW00100 v HOOFF = MW00101
(H1234) (HOO0FF) (H12FF)
4.5.3 XOR Instruction
[Format) @ [Any integer type register

Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subseript
Subscript register
| Constant

[Description] The XOR instruction outputs the exclusive logical sum (XOR) of the immediately
preceding A register and the designated register to the A register.

1-bit Truth Table for the Exclusive Logical Sum (XOR: A @ B=C)

A[B[C]
000
0|11
1]0(1
1 (110

[Operation of the Register]
A JF | B |1 J O: stored X : not stored

¥ :indeterminate
x[©0]12]9]9 (Stored or not stored depending on the case.)

[Example(s}] The exclusive logical sum of MW00100 and a constant is stored in MW00101.

MW00100 © H.OOFF == MW00101
(H5555) (H.0 OFF) (H55AA)

4-35

l Integer Type Entry Instruction (F) |

4.6 Numerical Operation Instructions

Data types include tfle intéger type, the double-length integer type, and the real number type. Refer
the Control Pack CP-92005H User's Manual (SIE-C879-40.1) for details.

4.6.1 Integer Type Entry Instruction

[Format] - Any integer type register : W
Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register with subscript
Subscript register
Constant ' ' i

[Description] The integer type.entry instruction enters data into the A register and starts an inte
- type operation. There on after, real number type data cannot be used until a real num
type entry instruction appears.

[Operation of the Register]

F [B 1 J (O: stored X :not stored
Ololo] O * :indeterminate - -
(Stored or not stored depending on the case.)

A
X

[Example(s)] The conbenté of MW00100 are entered in the A register.

FMW00100 -
The contents of MLO0100 are entered in the A register.
- ML00100
FMwool100 . == MW00200
(01234) o ' (01234)
FMW00101 - == MW00201
.. (00001) - (00001)
FMLO0100 === MLG0200
66770) . (66770)

MLO00100=66770 Lower 16 bits : MW00100 = 01234 = H04D2
' Upper 16 bits : MW00101 = 00001 = H0001

4-36

4. BASIC INSTRUCTIONS
LReal Number Type Entry Instruction { |-)—|

6.2 Real Number Type Entry Instruction (|)

[Format]

[Deseription]

[Any integer type register

Any integer type register with subscript

Any double-length integer type register

Any double-length integer type register with
subscript ‘

Any real number type register

Any real number type register with subscript
Subscript register

t Constant

The real number type entry instruction enters data into the F register and starts a real
number type operation. The series of operations beginning with a real number type
entry instruction can be programmed using integer, double-length integer, and real
number type registers. When an integer or double-length integer type register is
designated for a real number type entry instruction, the data is automatically converted
to a real number type data upon execution.

[Operation of the Register]

[Example(s)]

AIlF 1 (O: stored X : not stored

* :indeterminate

B dJ
O|x|O|C|C (Stored or not stored depending on the case.)

The content of DF00200 are entered in the F register.
i DF00200

The integer type data in DW00100 are converted to real number type data and then stored in the F register.

I DW00100

The double-length integer type data in DLO0100 are converted to real number type data and then stored in the F register.

I DL00100

|- DW00000 = DF00010
(00001) (1.OE+00)
|- DL00001 === DF00012
(1234567) {(L234567TE+06)
- DF00004 == DF00014
(-2.5E +00) (-2.5E+00)
NOTE

The following form of usage is not allowed.

F 12345 == DF0G200

4-37

) l Storage Instruction (=) |

46.3

4-38

Storage Instruction

[Format]

[Description] The storage instruction stores the contents of the F register or the A registerin t
designated register. Whether the A register or the F register is selected is determin
by the type of the immediately preceding entry instruction.
- | (Integer entry instruction) = The contents of the A register are storeg
* |- (Real number entry instruction) == The contents of the F register are store)

[Operation of the Register]

[Example(s)]

== [Any integer type register (except for # and C-registers)

Any integer, type register with subseript (except for # and C registers)
Any double-length integer type register (except for # and C registers)
Any double-length integer type register with subscript (except for # and

C registers)

i Subscript register

AJ|F | B 1 J ¥ . indeterms
ololololo : iIndeterminate

The contents of th”e A register are stored in MWO00100.

Any real number type register (except for # and C registers)
Any real number type register with subscript (except for # and C registers)

O: stored X : not stored

(Stored or not stored depending on the caée.)

they are in the real number for:

(1) The following form of usage is not allowed.

12345 = MWO00100
The contents of the A register are stored in ML00100.
1234567 ’ === MLO0100
The contents of the F registér are stored in DFO0100 as
. - 1.23456 : == DF00100
t ’ (1.23456))
The contents of the F register are converted into integer form and then stored in DWO0010
IF1234567 — DWO00100 | |
. (00001)
The contents of the; F register are converted into double-length integer form and stored in DLJ01
I 123456.7 = DLMN100
{123457)
NOTE

12345 = DF§0200

lower 16 bits are stored as they are. Be careful

(2) When a double-length integer type data is stored in an integer type register, tl

since an operation error will n

occur even if the data to be stored exceeds the integer range (-32768 to 32767)

+ML00100 = MW00200
(65535) ~ (—00001)

6.4

Addition Instruction (+)

[Format]

+ [Any integer type register

Subscript register
| Constant

Any integer type register with subscript
Any double-length integer type register

Any double-length integer type register with subscript
Any real number type register
Any real number type register with subscript

4. BASIC INSTRUCTIONS

lAddition Instruction (+)|

[Description] The addition instruction performs addition of integer type, double-length integer type,
and real number type values. An overflow operation error will occur if the result of
addition of integer type values is greater than 32767. An overflow operation error will
occur if the result of addition of double-length integer type values is greater than

2147483647.

{Operation of the Register]

[Example(s)]

1 |*2 (O]|]O]O

Addition of integer type values

* . indeterminate

(Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with a |- . Will be stored if the operation does not start with a -
*2: Will not be stored if the operation starts with a || . Will be stored if the operation does not start with a -

A|IF |B|I J (O stored X : not stored

- MW00100+ 12345 = MW00101
(03000) {15345)

- ML06102-+ ML00104 = MLO0106
(100000) (200000) (300000)

Addition of real number type values

i DF00200+1.23456 = DF00202
(10.0) (11.23456)

[DF00204 +DW00206 = DF{0208
(0.15) (00006) (6.15)

[DF00210+ DL00212 ==> DF00214
(3.51) (100000) (100003.51)

NOTE

will be a 64-bit operation.

aXb+e

Remainder correction operation (v} = I

a b

MOD

C

d

F ML00460 X ML00402 + ML00404 - ML00406

y
= ML00408

c
== ML00404

In the case of double-length integer type values, an operation using addition and
subtraction instructions (+, -, ++, --) will be a 32-bit operation. However, when an
addition or subtraction instruction is used in a remainder correction operation (where
a multiplication instruction (X) is the immediately preceding instruction and a
division instruction (=) is the immediately subsequent instruction), the operation

4-39

| Subtraction Instruction (

-)]

4.6.5 Subtraction Instruction (-)

{Format] .

[Any integer type register

Any integer type register with subscript

Any double-length integer type register

Any double-length integer type register w1th subscript
Any real number type register

Any real number type register with subscnpt
Subsecript register .

| Constant

[Description] The subtraction instruction performs subtraction of integer type, double-length integ
type, and real number type values. An underflow operation error will occur if t
subtraction result of integer type values is less than -32768. An underflow operati
error will occur if the subtraction result of double- length integer type values is le
than -2147483648.

[Operation of the Register]

A

F 1B 11 J (O : stored X : not stored

*1

*
2 | O O o) : indeterminate

(Stored or not stored depending on the case.)

*1 Will not be stored if the operation starts with a |~ . Will be stored if the operation does not start with a |-
*2: Will not be stored if the operation starts with a ||~ . Will be stored if the operation does not start with a |- .

[Example(s)] Subtraction of integer type values

" MW00100—12345 = MW00101
(03000) : (—09345)

" - ML00102—ML00104 = ML00106
(100000) (200000) (— 100000)

Subtraction of real number type values

i DF00200— 1.23456 == DF00202
(10.0) (8.76544)
I DF00204 —DW00206 i = DF00208
(0.15) (00006) (—5.85)
" [DF00210 — DL00212 = DF00214
(351) (100000 (—99996.49)|
" NOTE

In the case of double-length integer type values, an operation using addition an
subtraction instructions (+, -, ++, --) will be a 32-bit operation. However, when a
addition or subtraction instruction is used in a remainder correction operation (whe
a multiplication instruction (X) is the immediately preceding instruction and
division instruction (<) is the immediately subsequent instruction), the operatioc

will be a 64-bit operation.

Remainder correction operation (y) = _;a_l_de&
+ MLoozoo x Mm&oz * MLO€)404 : ML36406 ¥
. = ML00408
: ¢
MOD' , = MLO0404

4-40

6.6

4, BASIC INSTRUCTIONS
| Extended Addition Instruction { ++)—I

Extended Addition Instruction { ++)

[Format)] +4 | Any integer type register
Any integer type register with subscript
Any double-length integer type register * Cannot be used in a real
K : : : 3 number type operation begins
Any do_uble lqngth integer type register with subscript Jumnoe rej;ﬁemll)mber typegm
Subscript register entry instruction ([}~).

Constant

[Description] The extended addition instruction performs addition of integer type values. An operation
error will not occur even if the operation results in an overflow. Otherwise, the extended
addition instruction is identical to the addition instruction in function.

Integer type [Decimal numbers : 0—1---32767 —~ -32768----1—0

Hexadecimal numbers : 0000 — 0001---7FFF — 8000---FFFF — 0000
Double-length [Decimal numbers : 00— 1---2147483647 — -2147483648----1 -0
integer type | Hexadecimal numbers : 00000000 — 00000001---7FFFFFFF

— 80000000+ FFFFFFFF — 00000000

[Operation of the Register]

AJ|F B |1 J QO: stored X : not stored

X |lolololo * :indeterminate

(Stored or not stored depending on the case.)

[Example(s)] This instruction is used in cases where it is desirable that operation errors do not occur
in the addition of integer type values. :

+MW00100+ +00001 = MW00101
(32767) (—32768)
NOTE

In the case of double-length integer type values, an operation using addition and
subtractioninstructions (+, -, ++, --) will be a 32-bit operation.

However, when an addition or subtraction instruction is used in a remainder correction
operation (where a multiplication instruction (X) is the immediately preceding
instruction and a division instruction () is the immediately subsequent instruction),
the operation will be a 64-bit operation.

. .) Xb+
Remainder correction operation) = _ad_b_‘i_
a b ¢) d y
F ML00400 X ML00402 -+ ML00404 - ML00406 — MLO0408
c
MOD = ML00404

4-41

IExtended Subtraction Instruction (--) |

4.6.7 Extended Subtraction Instruction { -)

[Format] -- [Any integer type register
Any integer type register with subscript _
Any double-length integer type register: * Cannot be used in a real
Any double-length integer type register with subscript Ev‘;g‘bgfr?;f I:’Egﬁzirmt:y‘;igi
Subscript register entry instruction { -).
Constant

[Description] The extended subtraction instruction perfornis subtraction of integer type values. 4
operation error will not oceur even if the operation results in an underflow. Otherwiy
the extended subtraction instruction is identical to the subtraction instruction in funectig

Tnteger type .[Decimal numbers 1 0—1----32767 — 32768:--1 =0

Hexadecimal numbers : 0000 — FFFF---8000 — 7FFF---0001 — 004
Double-length[Decimal numbers . : 0—>-1----2147483648 — -2147483647---1 —
Hexadecimal numbers : 00000000 — FFFFFFFF---80000000

integer type
- — TFFFFFFF---00000001 — 00000000

[Operation of the Register] .
AIF 1B 1 J (O stored X : not stored
X olOololo * . indeterminate :

- {Stored or not stored depending on the case.)

[Example(s)] This instruction is used in cases where it is desirable that operation errors do not ocer
in the subtraction of integer type values.
F MW00100- -00001 = MW00101
(-32768) (32767)

NOTE
In the case of double-length integer type values, an operation using addition ax
subtraction - instructions (+, -, ++, --) will be a 32-bit operation.
However, when an addition or subtraction instruction is used in a remainde
correction operation (where a multiplication instruction (X) is the immediate
preceding instruction and a division instruction (<) is the immediately subsequer
instruction), the operation will be a 64-bit operation.

. .) X b+
Remainder correction operation (y) = _E_dl)__c

a b c d : Yy
- MW00400>X ML 00402+ ML00404-+-ML00406 = ML00408

' C
MOD : — ML00404

4-42

6.8

4. BASIC INSTRUCTIONS

‘]Multiplication Instruction { X)]

Multtiplication Instruction{ X)

[Format)]

X

[Any integer type register

Any integer type register with subscript

Any double-length integer type register

Any double-length integer type register with subscnpt
Any real number type register

Any real number type register with subscript
Subscript register

Constant

J

[Description} The multiplication instruction performs multiplication of integer type, double-length

integer type, and real number type values. In the case of the multiplication of integer or

double-integer type values, X and = are used as a pair. However, if an integer type
multiplication result is to be stored in a double-length integer type register, only X is
used.

[Operation of the Register]

{Example(s)]

AJ|JF IBI|I J (O: stored X : not stored

wlzlo0l060 * - indeterminate

(Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with a |~ . Will be stored if the operation does not start witha |- .
*2: Will not be stored if the operation starts with a[l- . Will be stored if the operation does not start with a = .

Multiplication of integer type values

F MW00100X3+10 = MW00101
(01234) (00370)

FMW00102 X MW00103 = 1 == ML00104
(00010} (10000} (100000)

Multiplication of double-length integer type values

- MLOG100 X ML00102 -+ 18000 == ML00104

(100000) (0095000) (050000)
FMLO0106 X MLOG108 - MLO10 = ML0112
(100000) (100000) (50000) (200000)
Multiplication of real number type values
i DF00200 x DF00100 == DF00202
10.0) 3.0) (30.0)
|- DF00204 X DW00206 = DF00208
(0.15) (00002) 0.3)
I DF00210 X DL00212 = DF00214
0.15) (106000) (15000.0)
NOTE

16 bits, store it in double-length integer type register.

With integer type and double-length integer type multiplication, X instruction can
be used also independently. However, in this case, make a program so that the result
is within 32 bits (-2147483648 to +2147483647). When the result is within 16 bits (-
32768 to +32767), it can be stored in integer type register. When the result exceeds

= MW00100 X 3 = MW§0i01
(01234) (03702)

- MW00102 X MWO00103 = ML00104
(00010) ~(10000) (100000)

F ML00200 X ML00202 = ML00204
(100000) (0095000) (900000000)

4-43

rDivision Instruction { <+) I

4.6.9

4-44

Division Instruction (<)

[Format]

[Deseription]

[Example(s)]

[Aﬁy integer type register

Any integer type register with subseript

Any double-length integer type register

Any double-length integer type register with subscript
Any real number type register

Any real number type register with subscnpt
Subsecript register
Constant

The division instruction performs division of integer type, double-length integer t
and real number type values. Although X and '+ are usually used as a pair, + can
be used alone. Refer to the MOD instruction and the REM instruction concerning
remainder of a division operation. If the value of the designated register is 0, a divisi
by-zero error will occur. An operation error will also occur if the result of integer, dou
length integer, or real number type division in the F register falls outside the numeri
range of the A register.

. {Operation of the Register]

N

F

B

I

J

*1

*2

C

C

O

(O: stored X : not stored
* : indeterminate
(Stored or not stored dependmg on the case.)

*1. . Will not be stored if the operation starts with a |- . Will not be stored if the operation does not start with aj—.
*2: Will nat be stored if the operation starts with a |}~ . Will be stored if the operation does not start with a {}--.

Division of integer type values

- MW00100X1=3 = MW00101
(01234) (00411) -
F MW00102 -~ MW00103 = MW00104
(01234) ~ (00003) (00411)
Division of double-length integer type values
 ML00100 X ML00102+~ML00110 == ML00112
(100000) (100000) (50000) (200000)
 ML00104=MLO0110 - == ML00114
(1000000) (50000) (000020)
Division of real number type values
I- DF00200-3.0 = DF00202
(1237.5) - c (412.5)
I DF00200~ DF00204 = DF00206
(1237.5) (3.0) - (412.5)
I DF00200-=-DW00208 = DF00210
(1237.5) (00003) (412.5)
[DFo0212-+-DL00214 = DF00216
(100000.0) (40000) (2.5)

16.10

L6.11

4. BASIC INSTRUCTIONS

MOD Instruction
REM Instruction

MOD instruction

[Format)

[Description]

MOD

The MOD instruction outputs the remainder of an integer type or double-length integer
type division to the A register. Execute the MOD instruction immediately after the
divigion instruction or after the storage instruction { =). If the MOD instruction is not
executed immediately after the division instruction, the remainder of an integer type or
double-length integer division will not be guaranteed.

[Operation of the Register]

[Example(s}]

AJF{B |1 J (O: stored X : not stored
x Ol 1Ol O ® :indeterminate
- (Stored or not stored depending on the case.)

The quotient of an integer type division is stored in MW00101 and the remainder is stored in
MW00102.

EMWO00100 X 1 + 3

= MW00101
(00010) 00003)
MOD = MW00102
{00001)

The quotient of a double-length integer type division is stored into MLG0106 and the remainder is stored in
ML00108.

FML00100 X ML00102 < ML00104 — MLO0106
(100000) (60000) (34567) (173575)
MOD = ML00108

(32975)

(Note) : The quotient and remainder are generally determined together. It will thus be
convenient to use the instructions in the above manner.

REM Instruction

[Format]

[Description]

REM | Any real number type register
Any real number type register with subscript
Constant

The REM instruction outputs the remainder of a real number type division to the F
register. In this case, the remainder refers to the remainder obtained by repeatedly
subtracting the variable value designated by the F register. That is, the output value Y
of the REM instruction will be as follows when the F register value is A, the value of the
designated variable is X, and the number of repeated subtractions is n:

Y=A—XXn (0=Y<X)

[Operation of the Register]

[Example(s)]

(:stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

A|F B I J
C|lx {01010

The remainder of the division of the real number variable MF00200 by the constant
value, 1.5, is determined and stored in MF00202,

+MF00200 REM 1.5
(4.0)

= MF00202
(1.0)

4-45

' [INC Instruction |

4.6.12 INC Instruction -

[Format} INC | Any integer type register (except for # and C registers)

- | Any integer type register with subseript (except for # and C registers)
Any double-length integer type register (except for # and C registers)
Any double-length integer type register with subseript (except for # and
C registers) . _
| Subscript register . . ,

[Description] The INC instruction adds 1 to the designated integer or double-length integer ty;
register. In the case of an integer type register, an overflow operation error will n
occur even if the addition result exceeds 32767. Likewise, an overflow operation err
will not occur in the case of a double-length mteger type regmter

Integer Type
Decimal number 4 1 B RERLEE 32767 — — 32768 —1—0
. Hexadecimal number : 0000 — 0001---+-+ TFFE — 8000+ FFFF — 0000
Double-length Integer Type . T
Decimal number Q> 1++++++2147483647 — — 2147483648+ — 1 —0
Hexademmal number : 00000000 — 00000001---7FFFFFFF — 80000000
: ---FFFFFFFF — 00000000
[Operation of the Register] . - . |
AT F 1B 11 IJ () : stored X : not stored
O lolololol * :indeterminate
(Stored or not stored depending on the case.)

[Example(s)] intege'r type

'+ FMW00100+ +1 == MW00100 -
]I equivalent
INC MWO00100
Double -length integer type '
FML00100+ +1 == ML00100
I[equivalent
INC ML00160
| NOTE
The followmg form of usage is not alIowed
INC- #WOOIOO (# register)
INC DF00200 (real number type reglster)

4-46

.6.13

4. BASIC INSTRUCTIONS

| DEC Instruction

DEC Instruction

{Format}

DEC| Any integer type register (except for # and C registers)
Any integer type register with subseript (except for # and C registers)
Any double-length integer type register (except for # and C registers)
Any double-length integer type register with subscript {except for # and
C registers)
Subseript register

[Description] The DEC instruction subtracts 1 from the designated integer or double-length integer

type register. In the cage of an integer type register, an underflow operation error will
not occur even if the subtraction result fails below -32768. Likewise, an underflow
operation error will not occur in the case of a double-length integer type register.

Integer Type
Decimal number :0——1------— 32768 — 32767------ 1—0
Hexadecimal number : 0000 — FFFF:+-:«: 8000 — TFFF-:+-+- 0001 — 0000
Double-length Integer Type
Decimal number 10— — 10 — 2147483648 ~— 2147483647+ 1—+0
Hexadecimal number : 00000000 — FFFFFFFF------80000000 — 7FFFFEFFF

----- 60000001 — 00000000

[Operation of the Register]

[Example(s)]

O: stored X : not stored

A F B I J * :indeterminate
otltolololo (Stored or not stored depending on the case.)
Integer type

I[equivalent

DEC MWO00100

Double-length integer type

- ML00100--1 = ML00100

l[equivalent

DEC ML00100

NOTE
The following form of usage is not allowed.

DEC #W00100 (# register)
DEC DF00200 (real number type register)

4-47

| Time Add Instruction (TMADD) |

4614 Time Add Instruction (TMADD)

[Format] i [Time to'be added] - . [Time to add]

TMADD Any integer type register] , [Any integer type register
(except for #and C registers) Any integer type register with
Any integer type register with subscript
subscript (except for # and C :
registers)

[Descnptlon] The TMADD instruction performs addition on two time data (seconds, minutes, houn
The second parameter (tune to add) is added to the first parameter (time to be add
and the result is stored in the first parameter. It is essential that the formats
parameters I and 2 should be as shown in Table 4.12.

fable 4.12 Parameter Format

. Register offset’ | Data contents | Data range (BCD)

’ . 0 | Hours/minutes | Upper byte (hours): 0 to 23,
' o Lower byte (minutes): 0 to 59
-1 Seconds 0000 to 0059

When the contents of the first parameter, second parameter, and operation result are
the data ranges listed above, the operation is performed normally. After operation, t
B register turns OFF. Conversely, if a parameter has data that exceeds the above ran,
"9999H" is stored for the seconds of the parameter and the operation is stopped. Th
the B register turns ON.

[Operation of the Reglster]
‘A F B |1 oJ
C{1Oo [x OO

{): stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The time ciata in DWOOOO-DWOOOI is added fo the time data in MW00100-MW0010

DB000100

TMADD - MW00100, Dwooooo O {

8 hrs 40 min 32 sec + 1hs22 min 16 sec = 10 hrs 2 min 48 sec
" (MW00100) (MWO0101) (DWO00000) (DW00001)) MWO00100y (MWO00101)

~ Before execution After execution
MW00100 0840H : 1002H. .

- MW00101 0032H 0048H

. DW00000 0122H 0122H

‘DWO00001 0016H - 0016H

4-48

4. BASIC INSTRUCTIONS

| Time Subtraction Instruction (TMSUB) I

6.15 Time Subtraction Instruction (TMSUB)

[Format] [Time subtracted from] [Time subtracted]
TMSUB [Any integer type register 7 , [Any integer type register
(except for # and C registers) Any integer type register with
Any integer type register with subscript
subscript {except for # and C
registers)

{Description] The TMSUB instruction makes subtraction between two time data (hour/min/sec).
The second parameter (time subtracted) is subtracted from the first parameter (time
subtracted from), and the result is stored in the first parameter.

The formats of the first and second parameters must be as shown in Table 4.13.

Table 4.13 Parameter Format

Register offset | Data contents | Data range (BCD)
0 Hours/minutes | Upper byte (hours): 0 to 23,
Lower byte (minutes): 0 to 59
1 Seconds 0000-0059

When the contents of the first parameter, second parameter, and operation result are
in the data ranges listed above, the operation is performed normally. After opreation,
the B register turns OFF. Conversely, if a parmeter has data that exceeds the above
range, "9999H" is stored for the seconds of the parameter and the operation is stopped.
Then the B register turns ON.

[Operation of the Register]

ATF 1B 11 J (O :stored X : not stored
Olo I x101l0 * ; indeterminate
{Stored or not stored depending on the case.)

[Example(s)] The time data in DW0000-DWOO0O01 is subtracted from the time data in MW00100-

MWO00101.
DB000100
TMSUB MWO00100, DWO00000 O E
8 hrs 40 min 32 sec — 1 hs 22 min 16 sec = 7 hrs 18 min 16 sec
MW00100) (MWO00101) (DWO0000) (DW000D1) @IW00100) (MWOO101)
Before execution After execution
MW00100 0840H 0718H
MW00101 0032H 0016H
DWO00000 0122H 0122H
DWO00001 0016H 0016H

4-49

Time Spend Instruction kSPEND) |

4.6.16 Time Spend Instruction (SPEND) ‘ ,

[Format] [Time being subtracted from and result] [Time subtracted]}
SPEND Any integer type register | , [Any integer type register.
-| (except for # and C registers) Any integer type register with
Any integer type register with subscript
subscript {except for # and C
.| registers)

[Description] The SPEND instruction performs subtraction between two time data (Yr/Mo/Day/Hj
Min/Sec), and computes the elapsed time.
The second parameter (time subtracted) is subtracted from the first parameter (ti
subtracted from), and the result is stored in the first parameter.
The formats of the first and second parameters must be as shown in Tables 4.14 an

4.15,
Table 4.14 First Parameter Format
Register offset . Data contents - Data range (BCD) IO
-0 Year (BCD) 0000 to 0099 IN/OUT]
1 Month/Day (BCD) Upper byte {(month): 1 to 12, IN/OUTY
: - | Lower byte (day): 1 to 31
2 Hours/minutes (BCD) | Upper byte (hours): 0 to 23, IN/OUT)
, . .. : Lower byte (minutes): 0 to 59
3 Seconds (BCD) 0000 to 0059 IN/QUT
, . 4 Total number of seconds| This 1s the number of records OouT
. . . which 1s obtained by
converting Year/Month/Day/
5 : Hour/Minute/Second, which is
’ the results of operations, to
seconds. (Double-length
integer)
Table 4.15 Second Parameter Format
Register offset Data contents Data range (BCD) 1]
0 Year (BCD) 0000 to 0099 ’ IN
1 Month/Day (BCD) Upper byte (month): 1 to 12, IN
. Lower byte (day): 1 to 31
2 Hours/minutes (BCD) [Upper byte (hours): 0 to 23, IN
' - Lower byte (minutes): 0 to 59
3 Seconds (BCD) 0000 to 0059 _ IN

When the contents of the first parameter, second parameter, and operation result are
in the data ranges listed above, the operation is performed normally. After operation
the B register turns OFF. Conversely, if a parameter has data that exceeds the above
range, "9999H" is stored for the seconds of the parameter and the operation is stopped
Then the B register turns ON.

[Operation of thé Register]

J (O: stored X : not stored
el * . indeterminate
(Stored or not stored depending on the case.)

]

AJF | B
O |0 | x

4-50

[Example(s)]

4. BASIC INSTRUCTIONS
| Time Spend Instruction (SPEND)]

The time elapsed from the time data in MWO00100 to MW00103 to the time data in
DW00000 to DW00003 is stored to MW00100 to MWO00105.
DB000100 :
SPEND MWQ00100, DW0O0000 O o
98 vrs 5mos 11 davs 15 hrs 4 min 47 see — 98 yrs 4 mos 2 days 8 hs 18 min 8 sec
MW001005 (MW00101) (MW00102) (MWO00103) (DW0O000) (DWO00101) (DWO00102) (DW00103)
Before execution After execution
MW00100 H0098 HO0000
MWO00101 HO0511 HG0039
MW00102 H1504 H0651
MW00103 HO0047 HO0039
MW00104 —- 3394299
MWO00105 — {Decimal)
DWO00000 HO0098 HO0098
DW00001 H0402 Ho0402
DW00002 H0813 HO0813
DWO00003 HO008 HO0008
NOTE
In the operation results, the year is counted as 365 days and a leap year is not
taken into consideration. Also, the number of months is not counted. It is counted
"in days.

4-51

I INV Instruction |

4.7 Numerical Conversion Instructions
The 6 types of numerical conversion instructions shown in Table 4.16 are made available as instructio
for changing the contents of the A register or the F register. These-instructions use the contents of t]
A register or the F register as the input and leaves the operation result in the A register or F registq
Table 4.16 Numerical Conversion instructions
. : . Operation i
Numerical Conversion } Doublelength] Real Numerical Conversion Operation
Instruction . ;[nt.eg‘er Integer Number |)
.. .- ’ . : : Inveris the sign of the contents of the A registe
Sign inversion (INV) O @] O or F register.
; Determines the complement of 1 of the value in the
Complement of 1 (COM) Ne O X A register.
Determines the absolute value of the value in the A
Absolute ‘va.lue (ABS) O O O . register or F register.
BIN conversion (BIN) o 0O x II-::'::;TS BIN conversion of the contents of the 4
BCD conversion (BCD) o) O x Perfo?ms BCD conversion of the contents of the
A register.
Parity conversion (PARITY) , O O x E(l}ro:.atlg the number of bits in the A register that
. Converts the designated character string to
ASCII conversion 1 (ASCII) O x X ASCII codes.
ASCII conversion 2 (BINASC) O % x ~ E;;levserts the binary data in A register to ASCII
) . ‘Converts the ASCII codes to binary data and
ASCII conversion 3 (ASCBIN) O x x stores them in A register.
471 INV Instruction
[Format] INV

[Description] Inverts the sign of the contents of the A register or F register.

- [Operation of the Registei‘]

A | F

B

I

J

“ * *g

O

O

O

(O: stored X : not stored
* :indeterminate
{Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with al- . Will be stored if the operation does not start with a b= .
*2: Will not be stored if the operation starts with a . Will be stored if the operation does not start with a .

[Example(s)] Integer type data (A register)

- MW00100 'INV

(00160)

= MW00101
(—00100)

Double-length integer type data (A register)

F ML00100 INV
(100000)

= ML00102
{—100000)

Real number type data (F register)

I DF00200 INV
(1.0)

= DF00202
(—1.0)

4-52

}.7.2

1.7.3

4. BASIC INSTRUCTIONS

COM Instruction
ABS Instruction

COM Instruction

[Format] COM
[Description] Determines the complement of 1 of the value in the A register.

{Operation of the Register]

ATF IB |1 3 (O : stored X :notstored
x1lolololo * :indeterminate

(Stored or not stored depending on the case.)

[Examplé(s)] Integer type data (A register)

FMW00100 COM = MW00101
(H5555) - (HAAAA)
Double-length integer type data (A register)
FML00100 COM = ML00102
(H55555555) (HAAAAAAAA)

ABS Instruction
[Format] = ABS

[Description] Determines the absolute value of the value in the A register or F register.

[Operation of the Register]
AT F | B i 3 (> : stored X : not stored
= w o010 * :indeterminate
! (Stored or not stored depending on the ease.)

*1 : Will not be stored if the operation starts with a |- . Will be stored if the operation does not start witha b~ .
*2 : Will not be stored if the operation starts with a |- . Will be stored if the operation does not start with a - .

[Example(s)] Integer type data (A register)

F MW00100 ABS =)MWOOlOl
(-00100) (00100)

Double-length integer type data (A register)

F ML00100 ABS ML00102
(-100000) (160000)

—

Real number type data (F register)

- DF00200 ABS :>DF00202
(-1.0) (1.0)

4-53

BIN Instruction

BCD Instruction

4-54

[Description]

.4.74 BIN Instruction
[Format) BIN
{Description] This instruction converts a numeral expressed in BCD in the A register into a bing
‘ number (BIN conversion). If the (4-digit) numeral expressed in BCD in the integer
A register is abed, the output value Y of the BIN instruction can be determined by
following formula:
Y=(a X 1000)+ (b X 100) +{c X 10} +d
Although the above formula will be applied even if the numeral in the A register is
of a BCD expression (e.g. 123FH, etc.), a correct result will not be obtained in su
cases.
[Operation of the Register]
A TFTB 1T T 9 (: stored X :not stored
x1olololol * :indeterminate ‘
{Stored or not stored depending on the case.)
[Example(s)] Integer type data (A register)
+ MW00100 BIN _, MW00101
(H1234) (D01234)
Double-length integer type data (A register)
" ML001060 BIN ﬁ:MI..(}()102
P (H12345678) (D12345678)
4.7.5 BCD Instruction
[Format] BCD
{
This instruction converts a numeral expressed in binary in the A register into a B

expression (BCL) conversion). If the (4-digit) decimal expression of the numeral in t
integer type A register is Oabcd, the output value Y of the BCD instruction can |
determined by the following formula:

‘ Y=(aX4096)+ (b X 256)+(c X 16)+d
Although the above formula will be applied even if the numeral in the A register cann
be expressed in BCD (e.g. a number over 9999, negative numbers, etc.), a correct resu
will not be obtained in such cases.

[Operation of the Register]

[Example(s)]

A{F |B : 1 {O: stored X : not stored

J
>, ol lolo * : indeterminate

(Stored or not stored depending on the case.)

Integér type data (A register)

 MW00100 BCD _, MW00101

(D01234) ° (D1234)

Doulﬂe-length integer type data (A register)

= ML00100 BCD — MLO0102

(D12345678) (H12345678)

4. BASIC INSTRUCTIONS

PARITY Instruction
ASCII Instructions

7.6 PARITY Instruction

[Format] PARITY

[Description] This instruction is used to compute the number of binary expression bits that are ON
(=1) in the A register.

[Operation of the Register]

(O:stored X :not stored
é (I; g é JO * :indeterminate
(Stored or not stored depending on the case.)
[Example(s)]
Integer type data (A register)
F MW00100 PARITY :>MW00101
(HFOFO0) {00008)

Double-length integer type data (A register)

 MLO0100 PARITY =>.MWO(}102
(HFOFOFOFQ) (00016)

7.7 ASCII Instruction

[Format]
[Storage register number] [Text]
ASCH [Any integer type register {(except for # 1 [ASCII characters "
and C registers) .
Any integer type register with subscript
{except for # and C registers

[Description] The ASCII instruction converts the specified character string in the instruction to ASCII
codes, and stores them in the designated storage register.
These are stored in the order: first character, lower byte of the first word, second
character, upper byte of the first word. If the length of the character string is odd, the

upper byte of the last word in the storage register is a 0. A maximum of 32 characters
may be entered.

ASCII VW[I0OO <= "character string"
Upper byte Lower byte
vwOooo Second character ' First character
VWDOOCCH1 | Fourth character | Third character
VWOOCO+2 | Sixth character | Fifth character
VWOOOOG+3 | Eighth character Seventh character | V=8,1,0,M, D
|

|
1
1

: i n th character
1 [If the length of the character string is odd, the upper byte

of the last word in the storage register is a 0.
[Operation of the Register]

A|F |B
OCj]O0O|OC|0C |0

I T (O : stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

[Example(s)] (1) The character string "ABCD" is stored in MW00100 to MW00101.

ASCII MWO00100 "ABCD"

Upper Lower
MW00100 42H (B | 41H (A) MWO00100=4241H
MW00101 44H (D) | 43H (CY MW00101=4443H

4-55

ASCII Instruction
BINASC Instructions

L3

[Format} (2) The character string "ABCDEFG" is stored in MW00100 to MW00103.
ASCII MWO00100 “ABCDEFG”

Upper Lower ,
MWO00100 42H (B) | 41H (A" MW00100=4241H
¢ MW00101 44H (D) . 43H(C) - MW00101=4443H
MW00102 46H(F) , 45H(E) MW00102=4645H

MWO00103 00H . 47H (GY MW00103=0047H
' [N A "0" is entered in the extra byte.

47.8 BINASC Instruction
[Format] - - [Storage register number]
BINASC Any integer type register
' (except for # and C registers)
Any integer type register with subscript
(except for # and C register)

[Description] The BINASC instruction converts the 16-bit Binary data stored in the A register td
four digit hexadecimal ASCII code and stores it in the de51gnated storage register (tv
Words)

}- HXYZW (Hexadecimal input data) |
(Storage register)
In the‘ case of BINASC VW I

1 . Upper byte ___Lowerbyte
| VWIOOOO | Thirddigit(Y) : Fourth digit X)
1 VWOOO+1 | First digit (W) : Second digit (Z) V=S5, IL,O,M,D

[Operation of the Register]
: (O: stored X : not stored

A F - B 1 J * ! indeterminate
O]C6 1010160 (Stored or not stored dependmg on the case.)

[Example(s)] The "1234H" binary data éfored in the A register is converted to a four digit hexadecim
ASCII code and stored in MW00100 to MW00101.

- H1234
BINASC MWO00100

. Upper byte Lower byte
© MW00100 32H (2) :_31H (1) | MW00100=3231H
- MW00101, [34H (4) - 83H () | MW00101=3433H

4-56

.7.9

4. BASIC INSTRUCTIONS

L ASCBIN Instruction

ASCBIN Instruction

[Format] [Storage register number}]
ASCBIN [Any integer type register
' [Any integer type register]
with subseript

[Description] The ASCBIN instruction converts a numerical value expressed in a four digit hexa.

decimal ASCII code to 16-bit binary data. The converted result is stored in the A
register.

In the case of ASCBIN VWOOOD (Conversion source register)

Conversion source register A register
Upper byte Lower byte Upper Lower
\AREREN Third digit (Y) ' Fourth digit X) —> | XY | zZw |
VWOOOOO+1 | First digit (W) , second digit (Z)
V=S, LO,M,D

[Operation of the Register]

AIlF |B |I |[Jd
X100 |0O01{0C

(O: stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The four-byte ASCII code stored in MW00100 to MW00101 is converted to two-byte
binary data, and the result is stored in MW00200.

ASCBIN MWO00100 = MW00200
Data to be converted A register
Upper Lower Upper Lower
MW00100 32H (2" . 31H (D) —> MW00200 |- 12H i 34H |
MW00101 34H ('4) . 33H (3)

4-57

l Comparison Instructions I

4.8 Numerical Comparison Instructions
4.8.1 Comparison Instructions ‘
There are 6 types of comparisoi: instructions for comparing numerals and ingpecting equivalen
relationships.
[Format] "<][Any integer type register]
= | | Any integer type register with subscript
= | | Any double-length integer type register
¥ | | Any double-length integer type register with subscript
Z | | Any real number type register
> | | Any real number type register with subscnpt
Subscript register
Constant

[Description] A com'parison instruction stores the result of comparison of the immediately precedi
A or F register and the designated register in the B register (ON when true).

[Operation of the Register]

[Example(s)]

4-58

(O+stored X : not stored
* :indeterminate

ALlF | B |1 [Jd
ClO|Ix |OC}tOC

(1) If the value of MW00100 is not 100, the instructions from IFON and below aj

executed,

{Stored or not stored depending on the case.)

| . MBOOO010A
. Mwoo100 * 00100 —0—
| MBO0010A

|
EL

{

IFON
|- MW00101 + MW00102 + MW00103 = MWO00104
F MW00102

IEND.

(2) If you want to use the comparison result in a subsequent instruction, it is convenier
to accept the comparison result with the coil. Unless the value of MW00100 is 10

MWO00010A is set to ON.

MB00010A

- MW00100 # 00100
Instruction sequence

|

| MBO({(')IOA <

17
IFON .
- MW00101 + MW00102 + MW00103
- MW00102

= MW00104

IEND

This comparis
result is used

4. BASIC INSTRUCTIONS

[Comparison Instructiol?[

NOTE
1. Use the NO contact instruction if an IFON (IFOFF) or ON (OFF) instruction is to
be used after receiving the comparison result with a coil.

MB00010A
)

e

 MWO00100 #+ 00100
| MBoq(InOA
[

| L
IFON

IEND

2. When making a comparison of real number type registers, use a J instruction
before the comparison instruction.

11+1.0 = DF00010
DB000200
+ 21 O 1' Wrong
-1.1+1.0 _ = DF00010
DBQ00200 |
- DF00010 + 2.1 O { | Correct

3. Inthe case of real number type data, since there is a minute precision difference
in the data displayed on the CP-717, the execution result of a comparison
Instruction may not coincide with an apparent result.

4. Do not use instructions other than coil instruction when receiving the comparison
result with a coil. :

MBO00010A
- MW00100 # 00100 —
-~ | MB0001OB MB00010C |
| MB00010A ' I O -
) 11
IFON
IEND Wrong
!
MBO0010A
 MW00100 + 00100 O —
| MB000010A MB000010B MB000010C
— | o—
| MBO00010A
IFON
IEND Correct

4-59

Range Check Instruction (RCHK) |

4.8.2

4-60

Range Check Instruction (HCHK)

[Format] ; [Lower limit]
' [Any integer type register ,
‘Any integer type register with subscript
Any double-length integer type register
Any double-length integer type register
with subseript

‘Any real number type register

Any real number type register with
subscript

‘Subscript register

| Constant

‘[Upper limit]

[Any integer type register

Any integer type register with subseriq
Any double-length integer type registe
Any double-length integer type regist
with subscript

Any real number type reg15ter

Any real number type register wit
subscript

Subscript register

Constant

[Description] "The RCHK instruction examines the contents entered in the A register whether it
within the specified range or not. The result is output to the B register. The conten

of the A register are kept.
s (I input value)

Result

RCHK _ [Lower limit], [Upper limit] ———O—]

Output vaiue

Input value

Upper limit 7———r-—-

- Lower limit = |- -

B register=0FF

B register=0N

L oo ow .

. B register=0FF

* If the input value (A register) is greater than the lower limit and less than th

upper limit, the result (B register) =

ON.

. * In the cases other than the above, the result (B register) = OFF.

[Operation of the Register]

A|F |B|[1I J (O: stored X : not stored
Clo0olx OO * :indeterminate

(Stored or not stored depending on the case.)

[Example(s)) M For integer type operation
- MW00100
DB000000
RCHK -1000, 1000 O {
Input (MW00100) Output (DBOOO0OG0O)
—1000>MW00100 OFF
—I1000=MW00100=1000 ON
MWO00100>1000 OFF
m For double-length integer type operation ;
| MLo0100 :
' DB000000
RCHK -100000, 100000 O %
Tnput (MLO0100) Output (DB000000) _
—100000>ML00100 OFF
—100000=ML0O0100=100000 ON
ML0O0100>>100000 OFF

4, BASIC INSTRUCTIONS

[Range Check Instruction (RCHK) l

M For real number typé operation

- DFoo100
DB000000
RCHK -10.5, 10.5 O I
Input (DF00100) QOutput (DBOOG0O0O)
—10.5>DF00100 OFF
—10.5=DF00100=<10.5 ON
D¥00100>10.5 OFF

4-61

]RO’I'L Instruction/ROTR Instruction [

4.9 Data Operation Instructions

491 ROTL Instruction and ROTR Instruction

[Format] ‘ [Head Bit Address] [Number of Rotations] [Bit Width]
ROTL agie‘;)i: ftg;?; zgdlsm N= Any integer type register W= Any integer type regis
ROTR | | C registers) Any integer type register Any integer type regis
Any bit type register with subscript with subscript
with subseript - Constant T Constant
(except for # and !
C registers)

[Description] The ROTL (or ROTR) instruction is used to perform rotation, in the left (or right) di
for the number of times designated, on the bit table designated by the head bit addr

and the bit Wldth
I[(Bit width(m)
m-—] m—2 m-3 4 3 2 1 0‘ «— Head bit address
S R I I

Number of rotations ———————
Fig. 4.5 The ROTL Operation

[Operation of the Register]
(O: stored X : not stored
g (1; g é é ® :indeterminate
{Stored or not stored depending on the case.)

[Example(s)] (1) ROTL The data having MBOOOOOQA (bit A of MWO00000) as the head address an
bit width of 10 are rotated five times to the left.

ROTL MB00000A N=5 W=10
Rotation symmetry range (Bit width = 10)

i

c 9 4 0

Befi .
exeoution [OIOL[IOl TTTTTTTTT] Mwooooo
HENREERRENE HOIO|0!MW00001
NI
« F c.: 9 4 0
Atter [ofafofojoJo] | [[[[[T [[| MWooooo
execution . ¢
[TTTHITT I ID 1 [dofu]rfr] Mwoooo:
(2) ROTR The data having MB000000 (bit 0 of MW00000) as the head address and
bit v_vidth of 10 are rotated once to the right.
ROTR MBO000000 N=1 W=10
p F c s 4 0
oxccution | 1A 190 1] o] o[o[T[3[o[1[0[T]
| < =
J
Aft F C 8 4 0
A on IO (O[O0 0[]0
= =1

4-62

}.9.2

4. BASIC INSTRUCTIONS

| MOVB Instruction
MOVB Instruction
{Format] [Address of Transfer Source Bit] [Address of Transfer Destination Bit] [Number of Transfers]
MOQVB [Any bit type register => | Any bit type register W=| Any integer type register
Any bit type register (except for # and C Any integer type register
with subscript register) with subscript
Any bit type register Constant

with subscript

[Description] The MOVB instruetion transfers the designated number of bit data, starting from the
head of the transfer source bits, to the transfer destination, which starts from the address
of the head transfer destination bit. The transfer is carried out 1 bit at a time in the
direction in which the relay number increases.

Although the bit table of the transfer source will be stored as long as the transfer source
bits and transfer destination bits do not overlap, caution is needed when the bits do

overlap.
MOVB [Transfer => [Transfer Destination W= [Number of
Source Register Register No.] Transfers]
No.]
Transfer
Transfer source = destination
data area data area
I(—— Number of transfers (m) ——)} Address of the
m—1 m—2 m-3 9 4 3 2 1 0 __head transfer
011 ij1|lo|1l0]1 source bit
Vbl e (| S Address of the
head transfer
011 1/1[/0]1]0]1| gestinationbit
Transfer source Transfer destination Transfer source Transfer destination
(a) c a {a)
®) / 3 b \ ®)
c e c \ a
d / r d b
e / g e a
f / 0) ® \ b
g (&) | (g) | a
(h) (h) (h) (h)
When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)

[Operation of the Register]

(): stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

A|F B J
ClC (O]1]0O0]0O

4-63

I MOVB Instruction J

[Example(s)] The 10 bits of data starting from MBOOOOOO {bit 0 of MWOOOOO) are transferred
MBOOOOIO (bit 0 of MW00001). A

MOVB MBOOOOOO = MB000010 W=10

<— Transferrange
Mwooooo |1|0|0|1|1|0|1[1|0|o|1|0|o|0|0|1|

MWOO_OOl |0[0|010]0[0|0|1|1|1[0 |0|1[0|1|0|_
After fransfer l .

‘¢« Transfer range
Mwooooo I1J0|o|1[1|011I1|0[0[1 lololofo 1]

MW00001 lo[o[o]olo]ollﬁ—loTo 110 Io]o [of1]

4-64

4. BASIC INSTRUCTIONS

[MOVW Instruction |
9.3 MOVW Instruction
[Format] {Transfer Source Register No.] [Transfer Destination Register No.} [Number of Transfers]
Movw Any integer iype register = [Any integer type register w=| Any integer type register
Any integer t iste (except for # and C registers) Any integer type register
1y INLEger Lype regisier Any integer type register with with subsecript
with subscript subscript (except for # and C Constant

registers)

[Description] The MOVW instruction transfers the designated number of words of data, starting
from the head of the transfer source registers, to the transfer destination, which starts
from the address of the head transfer destination register. The transfer process is carried
out 1 word at a time in the direction in which the register number increases.
Although the transfer source will be stored as long as the transfer source and the transfer
destination do not overlap, caution is needed when these do overlap.

MOVW [Transfer Source Register No.] =D [Transfer Destination Register No.] W= [Number of Transfers)

|

T ‘ . |Transfer
ransfer source | = i .
destination data
data area
area

Transfer source Transfer destination Transfer source Transfer destination

@) [a (a)
L)) / d b)
[+ [C a
d f d b
e | &] e a
f H (1] b
_H | @ | | @ | a
@) (h) () ()

When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)

[Operation of the Register]

AJF |[B |I
O10 |O | O

(O: stored X :not stored
* :indeterminate
{Stored or not stored depending on the case.)

Of|&

[Example(s)] The word data MW00000 to MWO00009 are transferred to MW00100 to MW00109.

MOVW MW00000 — MW00100 W=00010

MW00000 1234H MW00100 1234H
MWO00001 2345H MW00101 2345H
MWO00002 3456H MW00102 3456H
: : Transfer . -
—
MW00009 9999H ~ MWO00199 9999H

4-65

| XCHG Instruction|

4.9.4 XCHG Instruction

[Format] . [Data Table 1] [Data Table 2] [Number of Transfers)
_ Any integer type register —% [Any integer type register — [Anvi ist]
XCHG (except for # and, C registers) ? {except for# and C W= An)y; ﬁﬁgﬁi %ﬁ 2gst
- Any integer type register with registers) - i with subscript
: subscript (except for# and C Any integer type register Constant
registers) with subscript (except for
and C registers)

[Description] . The XCHG instruction is used to exchange the contents of data table 1 and data tablej

"XCHG [Data Table1] = [Data Table 2] W = [Number of Transfers]

Hoh

: ,
; - . Data Table 1 .] Data Table 2
Data Table 1 Data Table 2 * DataTablel Data Table2
a i i a
b j i b
.c k k c
. d I = 1 d
. e m m e
f n n f
‘g 0 o g
‘h D p h
‘ Before execution of the After execution of the
; XC!;IG instruction XCHG instruction

[Operation of the Register]
‘(: stored X : not stored

A JF | BT J * : indeterminate .
010 O [O}O (Stored or not stored depending on the case.)

[Example{s)] The contents of MW00000 to MW00009 are exchanged with those of MW00100
MW00109. S '

T * XCHG MW00000 == MW00100 W=00010

MW00000 | 1031H | MWO00100| 2050H " MWO00000 | 2050H | MWO00100| 1031H
MW00001 | 1032H | MWO00101 | 2051H MW00001 | 2051H | MWO00101 | 1032E
MW00002 | 10338 | MWO00102 | 2052H MWO00002 | 2052H | MW00102 | 1033H

MW00003 | 1084H | MWO00103 | 2053H | After MW00003 | 2053H | MW00103 | 1034H
MW00004 | 1035H | MW00104 | 2054H "m‘Sf‘;r MW00004 | 2054H | MWO00104| 1035H

MWO00005 | -1036H | MWO00105 | 2055H | . MWO00005 | 2055H | MWO00105 | 1036H

MWO00006 | 1037H | MW00106| 2056H MWO00006 | 2056H | MW00106 | 1037H

. MWO00007 | 1038H | MWO00107 2057H MWOQOO‘? 2057H | MWO00107 | 1038H
‘ MW00008 | 1038H | MW00108 | 2058H MWO00008 | 2058H | MW00108 | 1039H

MWO00009 | 1030H | MWO00109| 2059H MW00009; 2059H | MWO00109 | 1030E

. 4-66

.9.5

SETW Instruction

[Format]

[Transfer Destination Register No.] [Data to be Transferred]
SETW | Any integer type register (except D= Any integer type register
for # and C registers) Any integer type register
Any integer type register with with subscript
subscript (except for# and C Constant
registers)

4. BASIC INSTRUCTIONS
| SETW Instruction

[Number of Transfers}

— [Any integer type register
Any integer type register

with subscript

Constant

[Description] The SETW instruction stores the data designated as transfer data in all registers
designated by the transfer destination register number and the number of transfers.
The storage process is carried out by 1 word in the direction of increasing register

number.

Transfer data

0

Transfer destination area

V=S5, 0,M,D

[Operation of the Register]

[Example(s)]

AR !B LT [J
|10 |0 |0 |0

(O : stored X : not stored

* :indeterminate

000 vwllOOO <— Transfer
ooaOo pvwIO0o+1

ocoE |vwOO000+2

o000 pvwOOOdms3

00000 (vwD0000+(e-1)

oooon pvwlOdO00+n

—

destination

register no.
Number
of -
Transfers

(Stored or not stored depending on the case.)

The contents of MW00100 to MW00119 are set to 0.

SETW MW00100 D=00000 W=00020

Transfer data

Transfer destination
00000 MWO00100
00000 MWO00101
00000 MW00102
00000 MW00103
Qo000 MWO0Q0118
00000 MWO00119

4-67

IEEXTD Instruction I

4.9.6 BEXTD Instruction

[Format] " | [Transfer Source Register No.] [Transfer Destination Register No J [Number of Transfers]

BEXTD | Anyinteger type register | to [Any integer type register B=| Any integer type register
Any integer type register (except for # and C registers) Any integer type register|
.y g . Ype regls Any integer type register with with subscript
W“'-h subscript subscript (except for # and C Constant
registers)

[Description] = The BEXTD instruction stores the byte sequence stored in the transfer source regis
area byte by byte in the word sequence of the transfer destmatlon register. The up
byte of the transfer destination register 1s "0."

In the case of BEXTD VW3 to VWAAAAA B=N

T vwOoo a (Lower byte) a (Lower byte)] VW AAAAA

. Number of ' - | b (Upper byte) 00H (Upper byte)
Transfers VWOOOOHL | ¢ b VW AALAA+
(Number of B ittt S NG AP bbbl
b; .
yteo) J w02 ¢ VW ABABA+

4/4“

. VW AAAAA+
looH |
V=S,I,O,M,D) e VW AAAAA+
looH
[_i: _______ i VW AAAAA+E
00H

[Operation of the Register]
(O: stored X : not stored

ALF B | J * :indeterminate
X 10101010 (Stored or not stored depending on the case.)

[Example(s)] The 5 bytes beginning with MW00100 are expanded into five words beginning wi
MW00200.

BEXTD MWO00100 to MW00200 B=00005

MWO00100 |10H (Lower byte)| ——— |10H (Lower byte)| MW00200
MWO00101 |{11H (Upper byte) -{00H (Upper byte)
MW00102 [12H T 11H MW00201
MWoo103 [13a] \ o
MW00104 [14H 12H__ |MW00202
o0oH v
13H MW00203
ooH |
T4aH MW00204
00H

4-68

9.7

BPRESS Instruction

[Format}
BPRESS

4. BASIC INSTRUCTIONS

LBPRESS Instruction
[Transfer Source Register No.] [Transfer Destination Register No.] [Number of Transfer bytes]
Any integer type register to [Any integer type register B=| Any integer type register
Any integer type register {except for # and C registers) Any Integer type register
. . Any integer type register with with subseript
with subseript subscript (except for # and C Constant

registers)

[Description] The BPRESS instruction stores the lower byte of the word sequence stored in the transfer
source register area in the byte sequence of the transfer destination register area. The
upper byte of the transfer source register is ignored. This is the reverse of the BEXTD
instruction.

-~

In the case of BPRESS VWD to VWAAAAA B=N

VWIIOG | _ a(Lower byte))
Number of 00H (Upper byte)
Transfers VWO b]
(Number of 00H
bytes) VWOOOO+2 | e
00H
& VWOOO+s | d_]
00H
vwOOOO 4 | e
00H
[Operation of the Register]
AJ|F |B |1 dJd
Cl1o |0 |10]|0

_—
7

a (Lower byte)

VW AAAAA

VW AAAAA+]

VW AAAAA+2

When the number of transfered
bytes is an odd number, "0" is set.

V=5,I,0,M,D

(O stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The 5 words beginning with MW00100 are compressed into five bytes beginning with
MW00200. '

BPRESS MWO00100 to MWO00200 B=00005

MWO00100

MWO00101

MW001062

MW00103

MWwWO00104

10H (Lower byte)

—

10H (Lower byte)

When the number

MW00200

MWO00201

{MWo0202

of transfered

bytes is an odd number, "0" is set.

4-69

|BSRCH Instruction |

498

4-70

BSRCH Instruction

[Format] [Head number of-
the search range]

BSRCH [Any integer type regxster

[Descnptmn] The BSRCH mstructmn uses a binary search method to search for the specified dat.

Any mnteger type register
with subscript
Any double-length integer

type register

Any double-length integer
type register
with subscript .
A.ny rea.l number type

Any real number type
| register with su.bscnpt

[Range word number] - [Search data] [Search resuilt]
W= Any integer type register TD=] Any integer type register] R= [Any integer type regi
Any integer type register Any integer type register (except for # and C
.| with subscript .| with subscript registers)
Constant Any double-length integer Any integer type regis
type register . with subseript (except
Any double-length integer # and C registers)
‘I type register with subscript
Any real number type
.| register
Any real number type
register with subscript
L] | Constant J L

in the specified search range. The search results (offset number of the search rang
head register number of matched data) are stored in the specified register.
Before the execution of the BSRCH instruction, it is necessary that the data in th

search range be sorted in ascending order. If this is not done, the result will not b

correct.

In addition, the result will not be correct if there are two or more identical data.
If no matched data is found, "-1" is stored.

[Operation of the Register]

A | F

B

I

O | O

O

O

d_J
O

[Example(s)] Data matching with 01234 are searched for in registers MW00100 to MW00199, and
the result is stored in register DW00000.

O : stored X ‘ not stored
* . indeterminate
(Stored or not stored depending on the case.)

BSRCH MW00100 W=100 D=01234 R~DWO00000

MWO00100
' MW00101

quomz

MW00199

98765

DWO00000 | 00002
34567 :
012_34 Offset number of MW00100 is stored
in DW00000.
: DwWo00000 < 00102 — 00100
00000 f f

MWG0102 MWO00100

.9

SORT Instruction

[Format]
SORT

[Description] The SORT instruction arranges data in the specified register range in ascending order.

{Head number of the sort range}

[Any integer type register

(except for # and C registers)

Any integer type register with subscript
Any double-length integer type register
(except for # and C registers)

Any double-length integer type register
with subscript

Any real number type register

(except for # and C registers)
- Any real number type register with subscript-

[Operation of the Register] .

A F I

B J
OJC 1O }JO|O

[Example(s)]

4. BASIC INSTRUCTIONS

L SORT Instructionj

[Number of range registers]

[Any integer type register

Any integer type register with subscript

Any double-length integer type register

Any double-length integer type register

with subseript

Any real number type register

Any real number type register with subscript

(O: stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

The data in registers MW00100 to MWO00199 are sorted in ascending order.

SORT MWO00100 W=00020

4-7

l SHFTL Instruction/SHFTR Instruction |

49.10 SHFTL instruction and SHFTR Instruction

[Format) ' " [Head Bit Address] [Number of Shifts]. [Bit Width]
SHFTL éizebi: ;i_p; :igt'liSéer. N= [Any integer type register W= [Any integer type regis
S< regisfers) A1.1y i.ntegex:-type register Any integer type regist
Any bit type register - with subscript with subscript
with S'I.leCl'ipf. Constant - .
{except for# and C - Constant
Tegisters)

[Description] The SHIFTL (SHIFTR) instruction shifts to the left (nght) by only the specified num
of shifts the bit sequence specified by head bit address and bit width.
As shown in Fig. 4.6, bit data that overflows the bit width is thrown away, and insuffici
bits become 0.

k - Bit width(m) 3
Before mlmoZm-3m-dmeS 4 3 2 1 O o Headbitaddress
execution Xo1 | Xor2 | Xo3 | Xowd | X5 (X | XXX | Xo
— - T
Thrown away
1
After i . -
execution Xns | . Xe | 0 °A 0|0
. I Number —
of shifts - 01is entered

Fig. 4.6 The SHIFT Operation

[Operation of the Register]
: (O stored X : not stored

A | F B |1 | d * :indeterminate
1O]G]0]O0 O (Stored or not stored dependmg on the case.)

[Example(s)] (1) SHFTL A ten-bit wide section of data mth MBO0O000A (bit A of MW00000) as t
head is shifted five bits to the Ieft

SHFTL MBOO0000A N=5 W=10

Shift 5 bits to the left.
Al
MWo00000 [1[1jofofola] - T |
3
MWgo001 [- - - lo[1]of1]
2 A d z %—
MWwo0000 (1fo[ofoJofo] - - . - - |
0 is entered 4
' - Note: The upper five bits
MWO00001 [_v --------------- !1[0|0|0| are thrown away.

(2) SHFTR A five-bit wide section of data mth MB00005 (bit 5 of MWOOOOO) ast
- head is shifted three bits to the right.

SHFTR MB000005 N=3 W=5

MWO00000 |- .- jololol1]1]- - - | Note: The lower three bi

4-72 are thrown away.

[
0 1s entered.

.9.11

4. BASIC INSTRUCTIONS

[COPYW Instruction
COPYW Instruction
[Format] [Transfer Source Register No.] [Transfer Destination Register No.] [Number of Transfers]
COPYW |Any bit type register | N=[Any bit type register W= | Any integer type register
Any bit type register (except for # and C registers) Any integer type register
with subscript Any bit t¥pe register with subscript with subscript
(except for # and C registers) Constant

[Description] The COPYW instruction transfers the specified number of word data to the head of the
transfer destination register from the head of the transfer source register. The transfer
operation copies the data in a block from the transfer source to the transfer destination.
Even if there is overlap between the transfer source and the transfer destination, the
full transfer data block is copied to the transfer destination.

COPYW [Transfer => [Transfer source W=[Number of
destination register no.] transfers]
register no.] l
> Transfer
Transfer source = destination
data area data area
Transfer source Transfer destination Transfer source Transfer destination
(a) c a (a)
®) a b \ ®)
[e ¢ \ a
d / f d \ b
= / : \ -
£ / ® ® \ d
g €3] (2) e
() (h) (h) (h)
. When the transfer source and When the transfer source and
transfer destination overlap (1) transfer destination overlap (2)

[Operation of the Register]
() : stored X : not stored

ALF B 1 J * :indeterminate
OO |O[O]O (Stored or not stored depending on the case.)

[Examples(s)] The word data of MWO00000 to MWO00009 are transferred to MW00100 to MW00109.
COPYW MWO00000 => MW00100 W=00010

MWO00000 1032H MW00100 1032H

MW00001 1133H MWO00101 1133H

MW00002 12340 ﬁ'f:z:fer MW00102 12340
—

MW00008 1841H MW00108 1841H

MW00009 1842H MW00109 1842H

4-73

| BSWAP Instruction

4912 BSWAP Instruction

[Format] , [Target register number]

! Any bit type register
BSWAP {except for # and C registers)
. Any bit type register with subseript
{except for # and C registers)

[Description] The BSWAP instruction swaps the upper and lower bytes of the specified register.

. -(Target register) :
/In the case of BSWAP VW [DOU '
' VWi vw oo
Upper _Lower Upper., Lower — yg,1,0,M,D
a 1+ b = b 1+ a '
Before swap After swap

[Operation of the Register] .
(O : stored X : not stored

A|F B |1 dJ * - indeterminate :
ololTolcoclto (Stored or not stored depending on the case.)

[Example(s)] The upper and lower bytes of MW00100 to MW00102 are swapped.

| FOR I = 00000 to 00002 by 00001
' BSWAP MW00100 i
FEND '

, sUpper Lower " Upper Lower
MWO00100 12H 1 34H = MWO00100 34H 1 12H

1 1

Before swap « . After swap

Upper Lower * Upper Lower
MWo0101 | 18H ' 44H | = mwooior | 44H 1 13H

Before swap : After swap

. . Upper Lower Upper . Lower
MW00102 14H i 54H = MWwWo00102 | 54H 1 14H

Before swap After swap

4-74

4. BASIC INSTRUCTIONS

[ﬁQRT Instruction

.10 Basic Function Instructions

101 SQRT Instruction
[Format)] SQRT

[Description] This instruction leaves the square root of integer type or real number type data as the
operation result. The input unit and the output result will differ according to whether
the data are of an integer type or a real number type. This instruction cannot be used
for double-length integer type data.

integer Type Data _
The operation result will differ slightly from the square root in mathematical terms.
To be more precise, the operation result is expressed by the following formula:
32768 X sign(A) x SQRT(} A|/32768)
sign (A) : sign of register A
Al : absolute value of register A
That is, the operation result will be equal to the mathematical square root multiplied
by 128y 2 (approx. 181.02). When the input is a negative number, the square root of
the absolute value is determined and the negative of this square root is left as the
operation result in the A register.
The maximum operation error of the output value is + 2.

Real Number Type Data
The immediately preceding operation result (F register) is used as the input and the
square root thereof is left in the F register. When the input is a negative number the
square root of the absolute value is determined and the negative of this square root is
left as the operation result in the A register. This instruction can be used inside a
real number type operation.

[Operation of the Register]

Int dat
nAeger type Cata (O: stored X : not stored
F |B L J * :indeterminate
x |O {0 |O]|O {Stored or not stored depending on the case.)

Real number type data (- stored X : not stored

A|F | B |1 J * :indeterminate
O|lx |C|O|0O (Stored or not stored depending on the case.)

{Example(s)] Integer type data
When the input is a positive number

MW00100 SQRT = MW00102
(00064) (01448)

When the input is a negative number

FMW00100 SQRT = MW00102
(~00064) (-01448)
Real number type data
When the input is a positive number
I-DF00200 SQRT == DF00202
(64.0) (8.0)
When the input is a negative number
I DF00200 SQRT = DF 00202
(-64.0) (-8.0)

4-75

| SIN Instruction |

4.10.2 SIN Instruction
[Format] SIN

[Description] This instruction leaves the sine of integer type or real number type data as the operat
result. The input unit and the output result will differ according to whether the d
are of an integer type or a real number type. This instruction cannot be used for dou
leng‘th mteger type data

Integer Type Data '

This instruction can be used in the range -327.68 ~ 327.67 degrees. T
immediately preceding operation result (A register) is used as the input (1 = 0
degrees) and the operation result 15 left in the A register.

Upon output, the operation result is multiplied by 10600.

If a number outside the range -327.68 to 327.67 is mlstakenly entered, a corr+
result will not be obtained. For example if 360.00 is entered, a result of -295
degrees is output.

Real Number Type Data :
The immediately preceding operation result (F register) is used as the input (
= degrees) and the sine thereof is left in the F reglster This instruction can
used inside a real number type operatlon

[Operation of the Register]
Integer type data

7 (O: stored X : not stored
* :indeterminate
X100 0O]0O (Stored or not stored depending on the case.)

A J (O: stored X : not stored
SRR * :indeterminate
: : 0190 (Stored or not stored depending on the case.)

' [Exémple(s)] Integer type data.

" FMW00100 SIN = MW00102 -
(03000) - (05000) .

Input -4 = 30 degrees (MWO00100 = 30 X 100 = 3000)
Output SIN(6)= 0.50 (MW00102 = 0.50 X 10000 = 5000}

Real number ty-;;e data
I DF00200 SIN ' === DF00202
(30.0) . (6.5)

4-76

1.10.3

COS Instruction

[Format)

COoS

4. BASIC INSTRUCTIONS

[COS Instruction

[Description] This instruction leaves the cosine of integer type or real number type data as the
operation result. The input unit and the output result will differ according to whether
the data are of an integer type or a real number type. This instruction cannot be used
for double-length integer type data.

Integer Type Data

This instruction can be used in the range -327.68 ~ 327.67 degrees. The immediately
preceding operation result (A register) is used as the input (1 = 0.01 degrees) and
the operation result is left in the A register. _
Upon output, the operation result is multiplied by 10000.

If a number outside the range -327.68 to 327.67 is mistakenly entered, a correct
result will not be obtained. For example, if 360.00 is entered, a result of -295.36

degrees is output.

Real Number Type Data
The immediately preceding operation result (F register) is used as the input (unit
= degrees) and the cosine thereof is left in the F register. This instruction can be
used inside a real number type operation.

[Operation of the Register]

[Example(s)]

Integer type data
A|lF |B I J
x O[O O
Real number type data
AlF | B I J
O1x |O10O]|0O
Integer type data

(O stored X : not stored
* . indeterminate
(Stored or not stored depending on the case.)

(O: stored X : not stored
* :indeterminate
{Stored or not stored depending on the case.)

(06000)

FMW00100 COS

== MW00102
{05000)

Input 8 = 60 degrees (MWO00100 = 60 X 100 = 6000)
Qutput COS(8) =0.50 (MW00102 = (.50 X 10000 = 5000)

Real number type data

(60.0)

[DF00200 COS

= DF00202
0.5)

4-T77

TAN Instruction
ASIN Instruction
ACOS Instruction

4,104

[Format]

[Deseription].

[Operation of the Register] .

- [Example(s)]

4.10.5
[Format]

[Description]

 used as the input (unit = degrees) and the arc sine thereof is left in the F register. TH

[Operation of the Register]

[Example(s)]

TAN Instruction

. TAN

The tangent of the input value (§ = 45.0 degrees) [TAN(4) = 1.0] is calculated.

ASIN instruction

With the TAN instruction, the immediately preceding operation result (F register)
used as the input (unit = degrees) and the tangent thereof is left in the F register.
instruction can be used inside a real number type operation.

(O: stored X : not stored
* :indeterminate :
{Stored or not stored depending on the case.)

‘A | F |[B |1 [J
Olx 101010

= DF00202
(1.0)

| DFo0200 TAN)
(45.0) ' g

ASIN
With the ASIN instruction, the immediately preceding operation result (F register)

instruction can be used inside a real number type operation.

(O: stored X : not stored
* :indeterminate
{Stored or not stored depending on the case.)

I
@)

AL F
O | x

d
O

B
O .

The arc sine of the input value (§ = 0.5) [ASIN(0.5) = # = 30.0 degrees] is calculate

" |- DF00200
(0.5) : :
- ASIN : = DF00202
(30.0)

4106 ACOS Instrué:tion

[Format]

[Description]

ACOS B

With the ACOS instruction, the immediately preceding operation result (F register)
used as the input (unit = degrees) and the arc cosine thereof is left in the F registe
This instruction can be used inside a real number type operation.

[Operation of the Register]

[Example(s)]

4-78

(: stored X : not stored
* :indeterminate
(Stored or not stored depending on the case.)

A |F
O X

I
C

J
C

B
O

The arc cosine of the input value (8 = 0.5) [ACOS(0.5) = # = 60.0 degrees] is calculate

- D¥00200
(0.5) ‘
. ACOS = DF00202
(60.0)

4. BASIC INSTRUCTIONS
| ATAN Instruction]

10.7 ATAN Instruction
[Format] ATAN

[Description] This instruction leaves the arc tangent of integer type or real number type data as the
operation result. The input unit and the output result will differ according to whether
the data are of an integer type or a real number type. This instruction cannot be used
for double-length integer type data.

Integer Type Data
This instruction can be used in the range -327.68 to 327.67. The immediately
preceding operation result (A register) is used as the input (1 = 0.01) and the
operation result is left in the A register.
Upon output, the operation result is multiplied by 100 degrees.

Real Number Type Data
The immediately preceding operation result (F register) is used as the input and
the arc tangent thereof (unit = degrees) is left in the F register. This instruction
can be used inside a real number type operation.

[Operation of the Register]

Int type data
nAegerpre Ba —— {O:stored X : not stored
* :indeterminate
X 1O 10O | O O (Stored or not stored depending on the case.)

Real number type data
(O: stored X :not stored

A LF B |1 J * :indeterminate
O 1 X | O | OO (Storedor not stored depending on the case.)

[Example(s)] Integer type data

- MW00100
(00100)
ATAN = MW00102
(04500)

Input X=1.00 MW0(0100 = 1.00 X 100 = 100)
Output § = 45 degrees (MWO00102 = 45 X 100 = 4500)

Real number type data
- DF00200
(1.0)
ATAN = DF00202
(45.0)

4-79

EXP Instruction

LN Instruction) . Lo

LOG Instruction

4.10.8

4.10.9

4.10.10

4-80

[Format] EXP

EXP Instruction . .

[Description] With the EXP instruction, the immediately preceding operation result (F register
. used as the input (x) and the natural logarithmic base (e) to the power of the in
value (e is left in the F register as the operation result. This instruction can be u

only inside a real number type operation.

[Operation of thé Register] - - .)
(: stored X : not stored

A[F | B |1 J * :indeterminate
o [x]OJOC|O (Stored or not stored depending on the case.)

[Example(s)] e (= 2.7183) to the power of the input value (x = 1.0) is calculated.

I DF00200 EXP == DF00202
an - (2.7183)

LN Instruction

[Format] LN

+

[Description] With the LN instruction, the immediately preceding operation result (F register)
used as the input (x) and the natural logarithm (Loge’)thereof is left in the F register
the operation result. This instruction can be used inside a real number type operatio

[Operation of the Register] A
(): stored X : not stored

A |F | B | I |Jd * :indeterminate o
O|x1O010C]|O (Stored or not stored depending on the case.)

[Example(s)] Calculate the nai:ural logarithm of the input value {x = 10.0) [Log.(x) = 2.3026].

I DF00200 LN == DF00202
(10.0)) : (2.3026)

LOG Instruction
[Format] LOG

[Deseription] With the LOG instruction, the immediately i:receding operation result (F register)
used as the input (x) and the common logarithm (logio®) thereof is left in the F regist
as the operation result. This instruction can be used inside a real number type operatio

1

[Operation of the Register]
(O: stored X : not stored

A F B ! J * . indeterminate
O | x 10 | O10 (Stored or not stored depending on the case.)

[Example(s)] The common logarithm of the input value (x = 10.0) [Loguo(x) = 1.0] is calculated.

[DF00200 LOG = DF00202
{10.0) (1.0 -

111

1.1

4. BASIC INSTRUCTIONS
DZA Instruction

DDC Instructions
DZA Instruction

[Format)] " [Designated Dead Zone Value]

DZA [Any integer type register 7
Any integer type register with subscript

Any double-length integer type register

Any double-length integer type register with subscript
Any real number type register

Any real number type register with subseript
Subscript register

-Constant

[Description] The DZA instruction executes a dead zone operation on integer, double-length integer,
or real number type data. Where X is the input value, D is the designated dead zone
value, and Y is the output value, the following operation is performed:

@Y=X(IX| = |DI|)
®Y=0(IXI < |D}|)

Y

Fig. 4.7 Operation of the DZA Instruction

[Operation of the Register]

ATF 1B 11 13 Q: stored X : not stored

w2z]lololo * :indeterminate]

(Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with al~ . Will be stored if the operation does not start with a j .
*2: Will not be stored if the operation starts with a |— . Will be stored if the operation does not start with a .

[Example(s)] Integer type operation

- MWO00100
(00150)
(00050)
DZA 00100 = MW00102

(00150) <— Qutside dead zone
(00000) <— Within dead zone

Double-length integer type operation

- ML00100
(200000)
(050000)
DZA 100000 : = ML00102

(200000) <— Qutside dead zone
(000000) <— Within dead zone

4-81

DZA Instruction
DZB Instruction

Real number type operation

I DF00200
(150.0)
(50.0)

DZA 100.0

= DF00202
{150.0) <— Qutside dead zon

{0.0) <— Within dead zone

411.2 DZB Instruction

[Format]
DZB

[Description] The DZB instruction executes a dead zone operation on integer, double-length integs
or real number type data. Where X is the input value, D is the designated dead zo
value, and Y is the output value, the following operation is performed:

(@Y=X~-|D| (IX| = ID|,X=0)

B Y=X+|D| (IX] 2 D], X=0)

@Y=0(IX] <D

[Operation of the Register]

[Designated Dead Zone Value] -
[Any integer type register

Any integer type register with subscript

Any double-length integer type register

Any double-length integer type register with subscript | .
.| Any real number type register
Any real number type register with subscript
Subseript register
Constant

Y

1

1D X J

r A

F

- B

I

J

. *1

*2

O

O

C

. i - 1
. Fig. 4.8 Operation of the DZB Instruction

O : stored X : not stored
* :indeterminate A
(Stored or not stored depending on the case.)

*1: Wil not be stored if the operation starts with a |- . Will be stored if the operation does not start with a |~
*2- Will not be stored if the operation starts with a |- . Will be stored if the operation does not start with a |-

4-82

4, BASIC INSTRUCTIONS

l DZB Instruction
[Example(s)] Integer type operation
= MW00100
(00150)
(00050)
DZB 00100 = MW00102
(00050) <— Qutside dead zone
(00000) <— Within dead zone
Double-length integer type operation
— ML00100
(200000)
{050000)
DZB 100000 = ML00102
‘ (100000) <— Qutside dead zone

(000000) <— Within dead zone

Real number type operation

- DF00200
(150.0)
(50.0)
DZB 100.0 = DF00202
(50.0) <— QOutside dead zone

<— Within dead zone

(0.0

4-83

| LIMIT Instruction |

4.11.3 LIMIT Instruction

4-84

[Format] : [Lower Limit] - [Upper Limit]
LIMIT| Any integer type register Any integer type register

Any integer type register with subscript : Any integer type register with subscript

] Any double-length integer type register Any double-length integer type register
Any double-length integer type register with | |Any double-length integer type register wi

‘| subscript ' subscript

{| Any real number type register Any real number type register

| Any real number type register with subscript Any real number type register with subscript
Subscript register | Subscript register

| Constant | {Constant

[Description] The LIMIT instruction executes an upperliower limit operation on integer, double-leng
integer, or real number type data. The following operation is performed:
. @Y=A X<A)
MY=XA=X=<B)
©@Y=B B<X ' .
Where X is the inout value. A is the lower limit, B is the upper limit, and Y is the cutp

Y

Upper limit : B faeves

. _/ X
PR Lower limit : A

Fig. 4.9 Operation of the LIMIT Instruction

[Operation of the Register] :

A TF | B |1 J O: stored X :mnot stored

12]010]0 * :indeterminate)

(Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with a |- . Will be stored if the operation dees not start witha |,
*9: Will not be stored if the operation starts with a [|-. Will be stored if the operation does not start with a [

[Example(s)] [l integer type operation

- MW00100
LIMIT -00100 00100 = MW00102
Input (MW00100) Cutput (MW0010)
-100>MW00100 -00100 (under the lower limit)
-100=MW00100=100 Value of MW00100 (within the upper and lower limits)
MW00100>-100 00100 {(above the upper limit)

H Double-length integer type operation

l— ML00100
! LIMIT -100000 100000 = ML00102
Input (MLO0100) Output (ML00102)
-100000>MLO0100 -100000 (under the lower limit) .
-100000=ML.00100=100000| Value of MLO0100 (within the upper and lower Yimits)
MLO0100>100000 - 100000 (above the upper limit)

4. BASIC INSTRUCTIONS

LIMIT Instruction

I Real number type operation

[MF00200
LIMIT -100.0 100.0 = MF00202
Input (MF00200) Output (MF00202)
" -100.6>DF00100 -100.0 (under the lower limit)
-100.0= DF00100=100.0 Value of MF00200 (within the upper and lower limits)
DF00100>100.0 100.0 (above the upper limit)

4-85

PI Instruction I

4114 Pl instruction .
[Format] [Head Address of Parameter Table] o
PI Register address (except for # and C registers)
[Register address with subscript (except for # and C registers)]

[Description] The PI instruction executes a PI operation in accordance with the contents of
parameter table that is set in advance. The input (X) to the PI operation must be
integer type or real number type value. The configuration of the parameter table wi
differ according to whether the parameters are of an integer type or of a real numbe
type. Double-length integer type parameters cannot be used (operations will b
performed with each parameter being handled as an mteger consisting of the lower 1
bits).

Table 4.17 Table of Integer Type Pl Instruction Parameters
ADR | Type | Symbol | Name Specification /0
0 w RLY Relay /O Relay input, relay output * IN/OUT]
1 w Kp P gain Gain of the P correction {a gain of 1 is set to 100) IN
2 w Ki Integration adjustment gain | Gain of the integration circuit input (a gain of 1 is set to 100) {IN
3 w Ti Integration time "|Integration time (ms) IN
4 W IUL Upper integration limit Upper limit for the I eorrection value IN
5 W L Lower integration limit Lower limit for the I correction value IN
6 W UL Upper PI limit Upper limit for the P+I correction value IN
7 w LL Lower PI limit Lower limit for the P+I correction value IN
8 w DB PI output dead band Width of the dead band for the P+I correction value IN
9 w Y PI output PI correction output (also output to the A register) ouT
10 W Yi I correction value Storage of the I correction value cur
11 w IREM | I remainder Storage of the I remainder QuUT
*1: Relay /O Bit A551gnment
BIT Symbol Name Specification 170
0 IRST Integration reset "ON" is input when integration is reset. IN
1to7 — | (Beserve) Reserve relay for input IN
8toF —— | (Reserve) Reserve relay for output ourT
‘Table 4.18 Table of Real Type Pl Insiruction Parameters
ADR | Type | Symbol | Name Specification (6]
0 w RLY |Relay IO Relay input, relay cutput *! IN/OUT
1 W (Reserve) Reserve register S
2 F Kp P gain Gain of the P correction IN
4 F Ki Integration adjustment gain|Gain of the integration circuit input IN
6 F Ti Integration time Integration time (g) IN
8 F IUL. | Upper integration limit Upper limit for the I correction value IN
10| F ILL Lower integration limit Lower limit for the I correction value IN
12| F UL Upper PI limit Upper limit for the P+I correction value IN
4| F LL Lower PI limit Lower limit for the P+I correction value IN
16} F DB PI output dead band Width of the dead band for the P+I correction value IN
18} F Y PI output PI correction output (also output to the A register) ouUT
20| F Yi I correction value Storage of the I correction value ouT
*]1: Relay I/O Bit Asmgm:nent
BIT Symbol Name Specification O
o IRST Integration reset’ "ON" is input when integration is reset. IN
1to7 (Reserve) Reserve relay for input IN
BtoF — | (Reserve) Reserve relay for output ouT

4-86

4. BASIC INSTRUCTIONS

LPI Instruction
Here, the PI operation is expressed as follows:
Y . 1 i N
— =Kp + X
x “HprKiXgseg
X: deviation input value
Y: output value
The following operation is performed within the PI instruection:
Y =Kp X X + {&i X X+IRE1V[)I—%—+Y?}
Yi': previous I output value Ts : scan time set value
] Block Diagram |
LIMIT,DB
Input + '/. QOutput
) ¢ Ip —" v
1Lt + j
Ki Is/Ti | b
+
71 |

When the P+l correction value reaches the upper or lower PI limit (UL, LL} or the Pl dead band (DB}
When the present P correction value and the I correction value are the same in sign (diverging), the I
correction value is not renewed but is kept at the previous value. Oppositely, if the P and I correction
values are opposite in sign (converging towards (), the I correction value is renewed by the present
value,

When the integration reset (IRST) is "ON"

Yi= 0 and IREM = 0 are output

[Operation of the Register]

AJFIBII J (O:stored X :not stored
M l210]1010 ® . indeterminate
(Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with a |- . Will be stored if the operation does not start with a |- .
*2: Will not be stored if the operation starts with a |- . Will be stored if the operation does not start with 2 |-

[Example(s)] Integer type operation .
MWO00100 to MW00111 are used for the parameter table.

- MWQ0010 <— Deviation input value

PI MA00100 = MW00011
= T
F
Head address of PI cutput value
parameter table

Real number type operation
MF00200 to MF00220 are used for the parameter table.

}-MF00200 < Deviation input value
PI MAO0200 = MFo00022
Las ~
|

Head address of PI output value
parameter table

4-87

ED Instruction |

4.11.5 PD Instruction -

[Format]

i Head Address of Parameter Table]

PD [
Register address

Register address (except for # and C registers)

with subscript (except for # and C registers) :I

[Description] The PD instruction executes a PD operation in accordance with the contents of
parameter table that is set in advance. The input (X) to the PD operation must be a
integer type or real number type value. The configuration of the parameter table

differ according to whether the parameters are of an integer type or of a real numbe
type. Double-length integer type parameters cannot be used (operations will b
performed with each parameter being handled as an integer consisting of the lower 1

bits).: .
Table 4.19 Table of Integer Type PD Instruction Parameters
ADR |Type | Symbol " Name Specification I¥0
0 W RLY | Relay /O Relay input, relay output *1 IN/O
1 W Kp P gain ~_+ _ {Gain of the P correction (a gain of 1 is set to 100) | IN
2 W Kd D gain Gain of the differentiation circuit input (a gain of 1 is set to 100)| IN
3 W Tdl Divergence differentiation time| The differentiation time (ms) used in the case of diverging input. | IN
4 W Td2 Convergence differentiation time | The differentiation time (ms) used in the case of converging input. | IN
5 w UL Upper PD limit Upper limit for the P+D correction value IN
6 w LL Lower PD limit Lower limit for the P+D correction value IN
7 w DB PD output dead band | Width of the dead band for the P+D correction value | IN
8 w! Y PD output PD correction output (also output to the A register) | OUT
9 w X Input value storage Storage of the present deviation input value out
*1: Relay I/O Bit Assignment
BIT Symbol Name Specification H[8)
Oto7 (Reserve) Reserve relay for input IN
8to I — | (Reserve) Reserve relay for output ouT
‘Table 4.20 Tat:;Ie of Real Type PD Instruction Parameters
ADR |Type | Symbol Name Specification /0
0 w RLY | Relay /O Relay input, relay output *! IN/QUT
1 W | — | (Reserve) Reserve register —_—
2 F Kp P gain Gain of the P correction IN
4 F Kd D gain Gain of the differentiation circuit input IN
6 F Td1l Divergence differentiation time| The differentiation time (s) used in the case of diverging input. [IN
8 F Td2 Convergence differentiation time| The differentiation time (s) used in the case of converging input.| IN
10 F UL Upper PD limit Upper limit for the P+D correction value IN
121 F LL Tower PD hmit Lower limit for the P+D correction value IN
14| F DB PD output dead band | Width of the dead band for the P+D correction vatue|IN
16| F Y PD output PD correction output (also output to the A register} | OUT
18| F X Input value storage Storage of the present deviation input value ouT
*1: Relay I/O Bit Assignment .
BIT Symbol Name Specification /O
Oto 7 (Reserve) Reserve relay for input ' IN
Sto F ——— | (Reserve) Reserve relay for output ouT

4-88

4. BASIC INSTRUCTIONS

| PD Instruction |
Here, the PD operation 1s expressed as follows:
% =Kp+Kd X Td X §
X: deviation input value Y: output value
The following operation is performed within the PD instruction:
Y=Kp X X+Kd X X=X X%
Xi' : previous input value Ts : scan time set value
—| Block Diagram_i
. 1
+ - /1 LINIT,DB
Input + 4 | Output
1 Ip - — > v
T

When the change in deviation output (X-X") and the previous deviation input (X') are the same in sign
{diverging) in the differentiation (D) operation

The divergence differentiation time (Td1) is used as the differentiation time.
When the change In deviation output (X-X') and the previous deviation input (X') are opposite in sign
{converging} in the differentiation (D) operation

The convergence differentiation time (T'd2) is used as the differentiation time.

[Operation of the Register]

[Example(s)]

AI|F 1B |1 J (O: stored X :not stored

* .4 3
M2]ololo : indeterminate

(Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with a |- . Will be stored if the operation does not start witha |- .
2. Will not be stored if the operation starts with a |l-. Will be stored if the operation does not start with a |- .

Integer type operation
MW00100 to MW00109 are used for the parameter table.
}— MWO00010 <— Deviation input value
PD MA00100 = MWgOOll
A
i

Head address of PD output value

parameter table
Real number type operation

MF00200 to MF00218 are used for the parameter table.

H—MF00200 <—Deviation input value

PD MA20200 = MF00022
~
]
Head address of PD output value
parameter table

4-89

{ PID Instruction |

PID Instruction

4.11.6 ¢

[Format] [Head Address of Parameter Table]

PID Register address {except for # and C registers)
Register address with subseript (except for # and C registers)

{Description] The PID instruction executes é PID operation in accordance with the contents of
parameter table that is set in advance. The input (X) to the PID operation must be
integer type or real number type value. The configuration of the parameter table
differ according to whether the parameters are of an integer type or of a real numbe
type. Double-length integer type parameters cannot be used (operations will b
performed with each parameter being handled as an mteger consisting of the lower 1
bits).

Table 4.21 Table of Integer Type PID Instruction Parameters
ADR [Type | Symbol Name Specification i /0
0 w RLY | Relay /O Relay input, relay output™ IN/OUT
1 W Kp P gain Gain of the P correction {a gain of 1 is set to 100) IN
2 W Ki Igain L Gain of the integration circuit input (a gain of 1 is set to 100) [IN
3 w Kd D gain Gain of the differentiation circuit input {a gain of 1 is set to 100) [IN
4 W Ti Integration time Integration time (ms) IN
5 w Tdl | Divergence differentiation time | The differentiation time (ms) used in the case of diverging input. |IN
6 W Td2 Convergence differentiation time { The differentiation time (ms) used in the case of converging input. |IN
7 W IUL | Upper integration limit | Upper limit for the I correction value IN
8 W | ILL | Lower integration limit |Lower limit for the I correction value IN
9| W UL Upper PID limit Upper limit for the P+I+D correction value IN
10| W LL Lower PID limit Lower limit for the P+I+D correction value IN
11| W DB ' | PID output dead band |Width of the dead band for the P+IH+D correction value [IN
12 | W Y PID output PID correction output (alsoc output to the A register) |OQUT
13| W Yi I correction value Storage of the I correction value ouT
i4 | W IREM | I remainder |Storage of the I remainder ouT
15| W X Input value storage Storage of the present deviation input value ouT
*1: Relay I/O Bit Assignment
BIT Symbol Name Specification 1[8]
0 IRST Iljtegration reset "ON" is input when integration is reset. IN
1to7 — | (Reserve) ' Reserve relay for input IN
StoF — | (Reserve) Reserve relay for output OUT

4-90

4. BASIC INSTRUCTIONS

[PID Instructioxﬂ
£ - %
Table 4.22 Table of Real Type PID Instruction Parameters
ADR {Type | Symbol Name Specification O
0 W RLY |Relay I/O Relay input, relay output *1 IN/QUT
1 w — {{Reserve) HReserve register -
2 F Kp |Pgain (Gain of the P correction IN
4 F Ki |[Igain Gain of the integration circuit input IN
6 F Kd |Dgain Gain of the differentiation circuit input IN
8 F Ti |Integration time Integration time (5) IN
10 F Tdl |Divergence differentiation time| The differentiation time (s} used in the case of diverging input.| IN
12 F Td2 | Convergence differentiation time | The differentiation time (s) used in the case of converging input. { IN
14 | F IUL |Upper integration limit | Upper limit for the I correction value IN
16 F ILL |Lower integration limit | Lower limit for the I correction value IN
18 F UL |Upper PID limit Upper limit for the P+I+D correction value IN
20 | F LL |Lower PID limit Lower limit for the P+I+D correction value IN
22 | ¥ DB |PID output dead band | Width of the dead band for the P+1+D correction value] IN
24 t F Y |PID output PID correction cutput (also output to the A register)] OUT
26 | F Yi |[I correction value Storage of the I correction value ouT
28 | F X Input value storage Storage of the present deviation input value | OUT
*1: Relay I/O Bit Assignment
BIT Symbol Name Specification ’ /O
0 IRST Integration reset "ON" is input when integration is reset. IN
1lto7 —— | (Reserve) Reserve relay for input IN
8t0 F ———— | (Reserve) Reserve relay for output OouT

Here, the PID operation is expressed as follows:

X =Kp+Ki X

X +Kd XTd X8

1
Ti X8
X: deviation input value

Y: output value

The following operation is performed within the PID instruction:

Y=Kp X X+ {(&i X x+IREM)/% +Yi? +Kd X (X-X) x%

X' : previous input value

Yi' : previcus I output value
Ts : scan time set value

4-91

[PID Instruction |

4-92

-i Block Diagram |

1

‘1 . i . x - . .
_ +l- K /s | LINIT,IB
Input Output
I kp - — y
. I LINIT
i

z-1

When the P+14D correction value reaches the upper or lower PID limit (UL, LL) or the PID dead band (DB)
When the present P correction value and the I correction value are the same in sign (diverging), the I
correction value is not renewed but is kept at the previous value. Oppositely, if the P and I correction
values are opposite in sign (converging towards 0), the I correction value is renewed with the present
value.

‘Whe'n the chénge inideviation'output {X-X') and the previous deviation input {X') are the same in sign
(diverging) in the differentiation (D) operation
The divergence differentiation time (T'd1) is used as the differentiation time.

When the chénge in deviation output (X-X') and the previous deviation input (X') are opposite in sign
(converging) in the differentiation (D) operation '
The convergence differentiation time (Td2) is used as the differentiation time.

When the integration reset (IRST} is “ON"
Yi= 0 and TREM = 0 are cutput.

[Operation of the Register]

AT F 1B 11 T 71 O:stored X ‘ not stored
w2]|0OlO0]|O * :indeterminate
(Stored or not stored depending on-the case.)

*1: Will not be stored if the operation starts with a |- . Will be stored if the operation does not start witha |- .
*2: Will not be stored if the operation starts with a i—. Will be stored if the operation does not start with a ||~ .

i

[Example(s)] Integer type operation

MW0100 to MWO00115 are used for the parameter table
|._ MWO00010 @Dew'atlon input value
PID M;!:OOIOO = MWQ](‘)OI 1

!
PID output value

Head address of
parameter table

Real number type operation
MFO00200 to MF00228 are used for the parameter table.

: “—MFOO 200 <—— Deviation input value

PID MA00200 = MF00022
. T
Head address of PID cutput value
parameter table

.11.7 LAG Instruction

[Format]

LAG

[Head Address of Pa

4. BASIC INSTRUCTIONS

| LAG Instruction‘|

rameter Table]

Register address (except for # and C registers)

Register address with subscript (except for # and C registers)

Table 4.23 Table of Integer Type LAG Instruction Parameters

[Description] The LAG instruction computes the first-order lag in accordance with the contents of a
parameter table that is set in advance. The input (X) to the LAG operation must be an
integer type or real number type value. The configuration of the parameter table will
differ according to whether the parameters are of an integer type or of a real number
type. Double-length integer type parameters cannot be used (operations will be performed
with each parameter being handled as an integer consisting of the lower 16 bits).

ADR |Type | Symbol Name Specification /O
0 W RLY | Relay I/O Relay input, relay output *S? IN/OUT]
1 W T First-order lag time constant | First-order lag time constant (ms) IN
2 w Y LAG output LAG output (also output to the A register) ouT
3 w REM | Remainder Storage of remainder ouT
*1: Relay I/O Bit Assignment
BIT Symbol Name Specification /O
o - IRST | LAG reset "ON" is input when LAG is reset. IN
1to7 — | (Reserve) Reserve relay for input IN
S8toF —— | (Reserve) Reserve relay for output ouT
Table 4.24 Table of Real Type LAG Instruction Parameters
ADR |Type | Symbol Name Specification /O -
0 w RLY | Relay I/O Relay input, relay output *! IN/OUT
1 W —— | (Reserve) Reserve register ——
2 F T First-order lag time constant | First-order lag time constant (s) IN
4 ¥ Y LAG output LAG output (also cutput to the F register) ouT
*1: Relay I/O Bit Assignment
BIT Symbol Name Specification o
0 IRST | LAG reset "ON" is input when LAG 1is reset. IN
lto 7 ———— | (Reserve) Reserve relay for input IN
StoF —— | (Reserve) Reserve relay for output our

Here, the LAG operation is expressed as follows:

Y

X T 1+

The following operation is performed within the LAG instruction with dt=Ts and dY=Y-Y"

Y=T><

TXS

1

Y+Ts X X+REM

T+ Ts

X : input value
Y : output value

Y': previ

ous output value

Ts : scan time set value

cie. T X (dY/dt)+Y =X

Y=0 and REM=0 are output when the LAG reset (RST) is "ON",

4-93

LLAG Instruction
LLAG Instruction

[Operation of the Register] :
ATF | B |1 13] O:stored X :not stored
w2]0l0TO * :indeterminate)
: : (Stored or not stored depending on the case.)
*1: Will not be stored if the operation starts with a |- . Will be stored if the operation does not start witha }-.
+2; Will not be stored if the operation starts with a |-. Will be stored if the operation does not start with a |-
[Example(s)] Integer type operation
MWO00100 to MW00103 are used for the parameter table.

|—MW00010 (—-Input. value . .
LAG MAOOlOO i] =$MWQ]QOII

l . -]
Head addzess of paramet.er table . LAG output value

Real number type operation
MF00200 to MF00204 are used for the parameter table.

N "_' MF00200 <— Input value . -
 LAG: MA00200 = MF0Q022

. = - F—
Head address of parameter table LAG °Utlf11t value

4.11.8 LLAG instruction

[Format] [Head Address of Parameter Table]

LLAG | Register address (except for # and C registers)
Register address with subscript (except for # and C registers)

[Description] - The LLAG instruction c_omputes the phase lead/lag in accordance with the contents of}
parameter table that is set in advance. The input (X) to the LL.AG operation must be 4
integer type or real number type value. The configuration of the parameter table wi
differ according to whether the parameters are of an integer type or of a real numbg
type. Double-length integer type parameters cannot be used (operations will be performd
with each parameter being handled as an integer consisting of the lower 16 bits).

Table 4.25 Table of Integer Typé LLAG Instruction Parameters

ADR [{Type | Symbol Name , | ' Specification 10
0 W RLY | Relay IO Relay input, relay output *! IN/OUT
1 W T2 Phase lead time constant | Phase lead time constant (ms) IN
2 w T1 Phase lag time constant|Phase lag time constant (ms) . . . IN
3. W Y LLAG output " | LLAG output (may also be output to the A register) | OUT
4 W | REM | Remainder Storage of remainder OUT
‘5 w X Input value storage Storage of the input value. ' ouT

BIT Symbol Name Specification . /O
0 IRST | LLAG reset . "ON" is input when LLAG is reset. IN
1to 7 — | (Reserve) * |Reserve relay for input : IN

8to F — | (Reserve) - Reserve relay for output ouT

4-94

4. BASIC INSTRUCTIONS

‘ LLAG Instruction ‘

Table 4.26 Table of Real Type LLAG Instruction Parameters

ADR |[Type | Symbol Name Specification I/0
0 w RLY | Relay I/O Relay input, relay output *! IN/IGUT
1 W | —— | (Reserve) Reserve register
2 F T2 Phase lead time constant |Phase lead time constant (s) IN
4 F T1 Phase lag time constant |Phase lag time constant (s) IN
6 F Y LLAG output LLAG output (may also be output to the F register} { QUT
8 F X Input value storage Storage of the input value ouT
*1: Relay I/O Bit Assignment
BIT Symbol Name Specification /0
0 IRST | LLAG reset *ON" is input when LLAG is reset. IN
1to7 — | (Reserve) Reserve relay for input IN
8toF — | (Reserve) Reserve relay for output ouT

Here, the LLAG operation is expressed as follows:

Y _ 1+T2XS

X 1+T1 XS

= 2F2A XS Lo T1 X (dY/dt) + Y =T2 + (dX/dt) + X

The following operation is performed within the LAG instruction with dt=Ts, dY=Y-Y', and dX=X-X"

Ti X Y + (T2 + Ts) X X - T2 X X' + REM

Y= T1+Ts
X :input value
Y :output value

X' : previous input value
Y' : previous cutput value
Ts : scan time set value

Y=0, REM=0, and X=0 are output when the LLAG reset (RST) is "ON."

[Operation of the Register]

AJlF |[B |1 J

(O: stored X : not stored

“11*2 | O] OO0

* :indeterminate

(Stored or not stored depending on the case.)

*1: Will not be stored if the operation starts with a |—. Will be stored if the operation does not start witha |- .
*9: Will not be stored if the operation starts with a [|-. Will be stored if the operation does not start with a |- .

[Example(s)} Integer type operation

MWO00100 to MW00105 are used for the parameter table.

LLAG ’IYIA00100

— MWO00010 <— Input value

‘:>qu901 1

I
Head address of parameter table

I
LLAG output value

Real number type operation
MF00200 to MF00208 are used for the parameter table.

|- MF00200 < lInput
LLAG MA00200

value

= MFOQPOZZ

Head address of parameter

table LLAG output value

4-95

| FGN Instruction l

4.11.9 FGN Instruction

[Format]

f Heﬁd Address of Parameter Table]

FGN | Register address

Register address with subscript

[Description] The FGN instruction generates a function curve in accordance with the contents of

parameter table that is set in advance. Although the inputs to the FGN instructio
can be integer type, double-length integer type, or real number type values, t
configuration of the parameter table will differ according to the type of values.

Table 4.27 Table of Integer Type FGN Instruction Parameters

ADR |Type | Symbol Name . Specification - /O
0 | W N Number of data - Number of pairs of X and Y oL IN
1 w X1 Data 1) IN
2 w Yi. |Datal - IN
-3 w X2 Data 2 - 7 IN
4 w Y2 Data 2 ' ‘ IN
2N-1| W XN | DataN ' - IN
2N w YN | DataN IN
Table 4.28 Table of Double-length Integer or Real Type FGN Instruction Parameters
ADR |Type | Symbol Name Specification /O
0 w N Number of data Number of pairs of X and Y IN
1 w S (Reserve) Reserve register IN
C 2 L/F X1 Data 1 IN
4 L/F Y1l. |Datal IN
6 L/F| X2 |Data2 IN
8 | /F| Y2. |Data2 ’ : IN
4N-2| L/F XN' | DataN : | : IN
4N L/F YN. | Data N IN

4-96

If the data set in the parameter table for the FGN instruction are X_and Y, the dat:
must be set sothat X = X . The FGN instruction searches for an X Y pair withir
the parameter table for Whlch X=X=X, and computes the output value Y according
to the following formula:

Y

Y=Y+___n+1_"-=_>< X-X 1= éN-—l
A X (XX) ()

n+l <+ o
The relationship between the data set in parameter table and the input va.lue X anc
output value Y will be as shown in Fig, 4.10:

I

Fig. 4.10 Relationship between Input and Output Values

4. BASIC INSTRUCTIONS
L FGN Instruction

If an X /Y_ pair, which satisfies X = X < X _ for an input value X, does not exist in the parameter
_table, the result will be as follows:

DUX<X;: Y—Y+§: Y, X-X)

l

@EX>X; Y=Y+)Y(=l (X-X,)
n-1
NOTE
An operation error may occur if the parameters are not set correctly.
A division error will occur if the number of data (number of X/Y pairs) is 0.
When using the FGN instruction for a double-length integer type operation, be sure to execute
" |- double-length integer type register” immediately before the FGN instruction.

{Operation of the Register] ‘
A | F B 1 J (O stored X not stored
Ml=z]lololo ® :indeterminate _
(Stored or not stored depending on the case.)
*1: Will not be stored if the operation starts with a . Will be stored if the operation does not start with a |-,
*2: Will not be stored if the operation starts with a I-. Will be stored if the operation does not start with a f-.

[Example(s)] Integer type operation (number of data: N=20)
#WO00000 to #W00040 are used for the parameter table.

- MW00010 < Input value
FGN #%00000 = MWQPO 11

|
Cutput value

Head address of parameter table

Double-length integer type operation (number of data: N=20)
#1L.00000 to #L.00080 are used for the parameter table.

I_.. ML0O0100 < Input value
FGN #ﬁOOOOG => M];OglOZ

i
Output value

Head address of parameter table

Real number type operation (number of data: N=20)
#F00000 to #F00080 are used for the parameter table.

-MF00020 < —Input value
FGN #ﬁ}ooooo :MFogozz

Qutput value

Head address of parameter table

NOTE
The following form of usage is not allowed.
- ML00000 + 10 ‘= ML00002
FGN MAQ0100 = ML00004
- ML00000
"Comment"
FGN MAQO100 = MLO0006

4-97

[IFGN Instruction |

1

4.11.10 IFGN Instruction
i

[Format] ‘ [Head Address of Parameter Table |

IFGN Register address
Register address with subscript

[Description] The IFGN instruction generates a function curve in accordance with the contents of
parameter table that is set in advance. Although the inputs to the IFGN instructio
can be integer type, double-length integer type, or real number type values, th
configuration of the parameter table will differ according to the type of values. Th
parameter tables are the same as those for the FGN instruction.

Refer to the table 4.27 and the table 4.28.

If the data set in the parameter table for the IFGN instruction are X_and Y , the da
must be set sothat Y, = Y_, . The IFGN instruction searches for an X /Y pair withi
the parameter table for whlch Y =Y=Y_ foraninput value Y and computes th
output value X according to the fo]lowmg formula

X . X
X=X+_24 2 (Y-Y

The relationship between the data set in parameter data and the input value Y an
output value X will be as shown in Fig. 4.11. ¢

' Fig. 4.11 Relationship between Input and Output Values

If an X /Y pair, which satisfiesY = Y=Y , for an input value Y, does not exist in
the parameter table the result will be as follows

: @IfY<Y1: x-x+ }:3 ;(1 (Y-Y)

- X-X

@QEY>Y; X=X+ ——-——Y v ¥Y,)
NOTE
An operation error may occur if the parameters are not set correctly.
A division error will occur if the number of data (number of X/Y pairs} is 0.
When using the IFGN instruction for a double-length integer type operation, be
sure to execute " - double-length integer type register" immediately before the
IFGN instruction. - '

[Operation of the Register] . _
A TF 1B |1 7 1 O: stored X : not stored
ml20l0l0 * :indeterminate .
(Stored or not stored depending on the case.)
*1: Will not be stored if the operation starts with a - . Will be stored if the operation does not start witha |- .
*9: Will not be stored if the operation starts with a |- . Wil be stored if the operation does not start with a f—.

"4-98

[Example(s)]

Integer type operation (number of data: N=20)
#WO00000 to #W00040 are used for the parameter table.

]__ MW00010 < Inputvalue
IFGN fiAOOOOO

= MWQPOII

I

Head address of parameter table Output value

Double-length integer type operation (number of data: N=20)
#L.00000 to #L0O00S80 are used for the parameter table.

|_ MLO0100 < Inputvalue

IFGN ﬁAOOOOO = MLOQ\ 102

Head address of parameter table Qutput value

Real number type operation (number of data: N=20)
#F00000 to #F00080 are used for the parameter table.

 MF00200 <—Input value

IFGN #frAOOOOO =>MF09022
|
Head address of parameter table Output value
NOTE
The following form of usage is not allowed.
ML00G00 + 10 = MLO00002
IFGN MA00100 = ML00004
- ML00000
"Comment"
IFGN MAO00100 = ML00006

4. BASIC INSTRUCTIONS
I IFGN Instruction

4-99

[LAU Instruetion |

4.11.11 LAU Instruction

[Format] [Head Address of Parameter Table]

LAU |Register address (except for # and C registers)
Register address with subscript (except for # and C registers)

[Description] The LAU instruction is used to perform acceleration and deceleration at a fixe
acceleration/deceleration rate upon input of a speed reference (value of the A register
The operation is carried out in accordance with the contents of a parameter table t
is set in advance. The input (X) to the LAU operation must be an integer type or re
number type value. The configuration of the parameter table will differ according t
whether the parameters are of an integer type or of a real number type. Doubls
length integer type parameters cannot be used {operations will be performed wit]
each parameter being handled as an integer consisting of the lower 16 bits).

Table 4.29 Table of integer Type LAU Instruction Parameters

ADR [Type | Symboal Name - - Specification 1O
0 A RLY | Relay I/O . Relay input, relay output *! IN/O
1 w Lv 100% input level Scale of the 100% input IN
2 W AT Acceleration time Time for acceleration from 0% to 100% (0.1s) IN
3 W BT Deceleration time Time for deceleration from 100% to 0% (0.1s) IN
4 W QT Quick stop time | Time for quick stop from 100% to 0% (0.1s) IN
5 w v Current speed LAU ocutput (also output to the A register) OouT
6 W

DVDT | Current acceleration . |Scaled with the normal acceleration rate being set to 5000. | OUT
{deceleration speed ' -

W — | (Reserve) Reserve register
8 W VIM Previous speed reference | For storage of the previous value of the speed reference input ouT
9 W |DVDTK | Remainder Scaling coefficient of the current acceleration ouT
/deceleration speed (DVDT) (-32768 ~ 32767)
10 L REM | Remainder Remainder of the acceleration/deceleration rate | OUT -

*1: Relay I/O Bit Assignment

BIT Symbol Name Specification 110
RN Line is running . "ON" is input while the line is running. IN
1 QS Quick stop "OFF" is input upon quick stop. *! |IN
2 DVDTF | DVDT Operation not executed| "ON" is input at non-execution of DVDT operation.| IN
3 DVDTS | DVDT Operation selection | Selection DVDT operation type IN
4to07 -—— | (Reserve) » Reserve relay for input IN
8 ARY | In acceleration "ON" is output during acceleration. OouUT
9 BRY | In deceleration "ON" is output during deceleration. OUT
A LSP | Zerospeed "ON" is output at a speed of 0. ouT
B EQU | Coincidence "ON" is output when input value = output value. | OUT
CtoF - | (Reserve) Reserve relay for output ouT

*1: Whén the quick stop (QS) is "OFF", the quick stop time is used for the acceleration/deceleration time.

4-100

4. BASIC INSTRUCTIONS

| LAU Instruction
Table 4.30 Table of Real Number Type LAU Instruction Parameters
ADR |Type | Symbol Name Specification /0
0 w RLY | Relay YO Relay input, relay output *? IN/OUT
1 W — | (Reserve) Reserve register _ —
2 F Lv 100% input level Scale of the 100% input value IN
4 F AT Acceleration time Time for acceleration from 0% to 100% (s) IN
(] F BT Deceleration time Time for deceleration from 100% to 0% (s) IN
8 F QT Quick stop time Time for quick stop from 100% to 0% (s) IN
10 F v Current speed LAU output (also output to the F register) QuT
12 F DVDT | Current acceleration Current acceleration/deceleration is output. ouT
/deceleration speed
*1: Relay 1/0 Bit Assignment
BIT Symbol Name Specification 1O
0 RN Line is running "ON" is input while the line is running. IN
1 Qs Quick stop "OFF" is input upon quick stop. IN
2t07 —— | (Reserve) Reserve relay for input IN
8 ARY | In acceleration "ON" is output during acceleration. ouT
9 BRY | In deceleration "ON" is output during deceleration. ouT
A LSP | Zero speed "ON" is output at a speed of 0. OouT
B EQU | Coincidence "ON" ig output when input value = output value. | OUT
CtoF — | (Reserve) Reserve relay for output ouT

The following operations are performed inside the LAU instruction:

Integer Type LAU Instruction

Acceleration rate (ADV) =LV X Ts (0.1ms) + REM
AT (0.1s) X 1000

Deceleration rate (BDV) = LV X Ts (0.1ms) + REM
BT (0.1s) X 1000

When VI>V'(V'=0):

When VI<V'(V'=0):

V=V'+ ADV,; In acceleration (ARY) ON

V =V'-ADV, In acceleration (ARY) ON

When VI > V' (V'<0) :

When VI <V (V>0):

V =V + BDV; In deceleration (BRY) ON

V =V'—BDV, In deceleration (BRY) ON

When QS=0N (VI>V', V'<0} :
V = V'+ QDV; In deceleration (BRY) ON
When QS=0N (VI<V", V*>0) :
V=V'~QDV; In deceleration (BRY) ON

Quick stop rate (QDV) = LV X Ts (0.1ms) + REM
QT (0.1s) X 1000

V" previous speed output value
Ts : scan time set value (ms)
VTI: speed reference input

¢ Ifthe DVDT operation instruction (DVDTF) is ON, a current acceleration/deceleration operation
(DVDT) is performed.

* If DVDTF is OFF, DVDT = 0 is output.
IfDVDTF is ON, a current acceleration/deceleration operation (DVDT) is output after one of the
following operations has been performed through DVDT operation selection (DVDTS).

V-V

ADV

i DVDTS is OFF: DVDT = (V X DVDTEK) - (V' X DVDTE); DVDTK: DVDT coefficient.

HDVDTS is ON: DVDT=

X 5000

At V =0, the zero speed (LSP) is ON, at VI=V, coincidence (EQU) turns ON.
* When the "line is running” (BRN) is "OFF," V=0, DVDT=0, and REM=0 are output.

4-101

LAU Instruction I

Real Number Type LAU Instruction

When VI > V' (V>0)
: LV XTs (0 1ms) V =V + ADV: "In acceleration” (ARY) is ON
Acceleratwn rate (ADV) = AT X 10000 : When VI < V" (V<0)
: . V=V'— ADV: "In acceleration” (ARY) is ON
) LV XTs(0. ' When VI < V" (V'>0) .
Deceleration rate (BDV) =" LV TS (0 1ms} V=V + BDV: "In deceleration” (BRY) is ON
) T BT(s) X 10000- When VI > V' (V'<0)
o . V=V - BDV: "In deceleration” (BRY) is ON
Quick Qs = LV X Ts (0.1ms) When Qs=og V>V 2 0) '
uick stop rate = - . ¢ V=V'+QDV: "In deceleration” (BRY) is ON
. - QT(s) X 10000 When QS=0N (V'< VI = 0)

V=V — QDV: "In deceleration” (BRY) is ON

V' previous speed output value
VI: speed reference input
Ts: scan time set value (ms)

The current eccelerationldecelerqtion speed (DVDT) is output after the following operation is carr;
out: : . S - :

DVDT‘=V-V' o)
When the "lme is runnmg" (RN) is "OFF,” V=0 and DVDT‘"O are output.-

[Operatmn of the Reglster]

A F B I J "(): stored X : not stored

—~ 3 : indeterminate
1 2| O O O (Stored or not stored depending on the ecase.)

*1: Will be stored if the operat:lon starts with a l-— Will not be stored if the operation does not start withal- .
*2: Will not be stored if the operation starts with a II-— Will be stored if the operation does not start with a |- .

[Example(s)] Integer type operation
o ' Use MW00100 to MW00106 for the parameter table.

1

]_ MWO0010 -<—Input value
f LAU MﬂtAOOlOO =>MWO¢9011

[
LAU output value

Head address of parameter table

Real number type operation '
-Use MF00200 to MF00212 for the parameter table.

: |_ MF00200 < Inputvalue

' LAU MA00200 ' :MFogozz
]
Head address of parameter table LAU output value

4-102

[Format]

[Description]

11.12 SLAU Instruction

4. BASIC INSTRUCTIONS

[SLAU Instruction

[Head Address of Parameter Table |

SLAU | Register address (except for # and C registers)
Register address with subscript (except for # and C registers)

The SLAU instruction is used to perform acceleration and deceleration at variable
acceleration/deceleration rates upon input of a speed reference (value of the A register). The
operation is carried out in accordance with the contents of a parameter table that is set in
advance. For integer type SLAU instruction, a positive or a negative value for speed reference
input can be entered. For real number type SLAU instruction, only a positive value for
speed reference input can be entered. Do not use a negative value therefore. Set it so that
the linear acceleration and deceleration time (AT/BT) = S-curve acceleration and deceleration
time (AAT/BBT). The input (X) to the SLAU operation must be an integer type or real number
type value. The configuration of the parameter table will differ according to whether the
parameters are of an integer type or of a real number type. Double-length integer type
parameters cannot be used (operations will be performed with each parameter being handled
as an integer consisting of the lower 16 bits).

Table 4.31 Table of Integer Type SLAU Instruction Parameters

ADR {Type | Symbol Name Specification /0
0 W |RLY Relay I/O Relay input, relay output. *! IN/OUT)
1 W LV 100% input level Scale of the 100% input IN
2 W | AT Acceleration time Time for acceleration from 0% to 100% (0.1s) IN
3 W {BT Deceleration time Time for deceleration from 100% to 0% (0.1s) IN
4 W QT Quick stop time Time for quick stop from 100% to 0% (0.1s) IN
b W | AAT S.curve acceleration time | Time spent in the S-curve region of acceleration (0.01-32.00s) IN
6 W | BBT S-curve deceleration time | Time spent in the S-curve region of deceleration (0.01-32.00s) IN
7 W iV Current speed SLAU output (also output to the A register) ouT
3 W | DVDT1 | 22555 dvpeg o coceteration Scaled with the normal acceleration rate being set to 5000. | OUT
9 W | —— | (Reserve) Reserve register

10 W | ABMD | Speed increase upon holding | Ameunt of change in speed after hold instruction and until stabilization, | QUT
11 W | REM1 | Remainder Remainder of the acceleration and deceleration rate | OUT
12 W | —— | (Reserve) Reserve register
13 W I VIM Previous speed reference | For storage of the previous value of the speed reference. OourT
14 L. | DVDT2 Sme?(“pm\%fgmmmmamn 1000 times of the current acceleration/ deceleration speed OuUT
16 | L [DVDT3 | ourtidvnm =™ | Current acceleration/deceleration speed(=DVDT2/1000) | OUT
18 L |REM2 | Remainder Remainder of the S-curve region acceleration and deceleration rate | QUT
20 W | REM3 | Remainder Remainder of the current speed OuT
21 W [DVDTK | DVDT1 coefficient Scaling coefficient of the current acceleration IN
/deceleration speed 1 (DVDT1) (-32768 to 32767)
*1: Relay I/O Bit Assignment
BIT Symbgl Name Specification /O
0 RN Line is running "ON" is input while the line is running. IN
1 Qs - Quick stop "OFF" is input upon guick stop. IN
2 DVDTF | DVDTI aperaticn not executed |"OFF" is input at non-execution of DVDT1 operation] IN
3 DVDTS | DVDT1 operation selection] Selection of DVDT]I operation type IN
4to7 —— | (Reserve) Reserve relay for input IN
8 ARY In acceleration "ON" 15 output during acceleration. ouT
9 BRY In deceleration "ON" 15 output during deceleration. OuUT
A LSP Zero speed "ON" is output at a speed of 0. ouT
B EQU Coincidence "ON" is output when input value = output value. | OUT
C EQU (Reserve) Reserve relay for output ouT
D CCF Work relay System internal work relay ouT
E BBF Work relay System internal work relay OuUT
F AAF Work relay System internal work relay ouT

4-103

’ SLAU Instructioxﬂ

Table 4.32 Table of Real Number Type SLAU instruction Parameters

ADR |[Type | Symbol Name Specification 1/0
0 W RLY | Relay /O Relay input, relay output *! IN/O
1 W | — | (Reserve) Reserve register —
2 F LV 100% input level Secale of the 100% input value’ IN
4 | F AT Acceleration time. Time for acceleration from 0% to 100% (s) IN
6 F BT Deceleration time Time for deceleration from 100% to 0% {s) IN
8 F QT Quick stop time Time for quick stop from 100% to 0% (s) IN

10 | F AAT | S-curve acceleration time | Time spent in the S-curve region of acceleration (s) IN
12 F BBT | S-curve decelerationtime |Time spent in the S-curve region of deceleration (s) IN
14 F \' Current speed SLAU output (also output to the F register) ouT
16 F | DVDT | Gurrent acceleration/deceleration| Current acceleration/deceleration speed is output] OUT
18 F | ABMD | Speed increase upon holding | Amount of change in speed after hold instruction and until stabilization. | OUT
*1: Relay /O Bit Assignment
BIT Symbal Name Specification /0
0 RN | Line is running "ON" is tnput while the line is running, IN
1 QS Quick stop "OFF" is input upon quick stop. - IN -
2t 7 — | (Reserve) Reserve relay for input ' IN
8 ARY | In acceleration "ON" is output during aceceleration. OouUT
g BRY | In deceleration. - "ON" is output during deceleration. OuT
A LSP | Zero speed "ON" is output at a speed of 0. oUT
B EQU | Coincidence "ON" is output when input value = output value. | OUT
CtoF — | (Reserve) Reserve relay for output OuT
The following operations are performed inside the SLAU instruction:

Integer Type SLAU Instruction

Acceleration rate (ADV) =
Deceleration rate (BDV) =

Quick stoppage rate (QDV) =

Acceleration rate in the S-curve region (ADVS) = ADVS'

ADV X Ts(0.1lms)+REM2
AAT{0.01s) X 100

4-104

AADVS =

v

X Ts(0.1ms)+*REM1)

|
1

AT(0.1s) X 1000

(LV X Ts{0.1msg)+REM1)

regxon (ADVS > ADV):
When Vi<V (V'=0):

When VI > V' (V' 2 0) outside the S-curve
V =V + ADV; In acceleration {(ARY) ON

V=V-ADV; In acceleration (ARY) ON

BT(0.1s) X 1000

(LV X Ts(0.1ms)+REM 1}

.region (BDVS < BDV):

When VI > V" (V'< 0) outside the S-curve

V=V'+BDV; In deceleration (BRY) 0Ol

WhenVI<V'(V‘>O)

V=V'-BDV;In deceleration (BRY) Ob

‘When QS=0N (VI > V', V'<0) :

QT(0.1s) X 1000

‘When QS=0N (VI <V, V>0) :

V =V'+ QDV:; In deceleration (BRY) ON

V.=V'-QDV,; In deceleration (BRY) ON
(Note) At quick stop, the movement is not
curve but linear (same as during L/

. quick stop).

+ AADVS

region (ADVE < ADV):
_WhenVI <V V' =0

When VI> V' (V' 2 0) inside the S-curve

V = V' + ADVS; In acceleration (ARY) OM

V = V'-ADVS; In acceleration {ARY) ON

4. BASIC INSTRUCTIONS

| SLAU Instruction
Deceleration rate in the S-curve region (BDVS) = BDVS' &+ BBDVS
~ When VI > V' (V'< () inside the S-curve
BBDVS = BDV X Ts(0.1ms)+REM2 region (BDVS < BDV):
BBT(0.01s) X 100 V = V'+ BDVS; In deceleration (BRY) ON
When VI < V' (V>0):

V' : previous speed output value V=V'~BDVS; In deceleration (BEY) ON

Ts : scan time set value (mns)
VI: speed reference input

If the DVDT operation instruction (DVDTF) is ON, a current acceleration/deceleration speed
operation 1 (DVDT1) is performed.

* T DVDTF is OFF, DVDT1 = 0 is output.

IF DVDTF is ON, a current acceleration/deceleration speed operation 1 (DVDT1) is output
after one of the following operations has been performed through DVDT1 operation selection
(DVDTS).

V-V
ADV

if DVDTS is OFF: (V X DVDTEK) — (V' X DVDTK); DVDTK: DVDT coefficient.

if DVDTS is ON: DVDT1 =

X 5000

The current acceleration/deceleration speed 2 (DVDT2) is output as follows:
During aceeleration inside the S-curve region : DVDT2 = + ADVS
During acceleration outside the S-curve region : DVDT2 = & ADV
During deceleration inside the S-curve region : DVDT2 = =+ BDVS
During deceleration outside the S-curve region :DVDT2 = x BDV

The speed increase upon holding (ABMD) is cutput after the following operation is performed.

DVDT2' XDVDT2'
ABMD = 5 AADVS(BBDVS) *
DVDT2' = Current aceeleration/deceleration speed 2 (DVDT2) previous value

* At V=0, the zero speed (LSP) is ON, at VI=V, coincidence (EQU) turns ON.

* When the line running signal (RN) is "OFE," V=0, DVDT1=0, DVDT2=0, DVDT3=0, ABMD=0,
REM1=0, REM2=0, and REM3=0 are output.

Real Number Type SLAU Instruction

. LV X Ts (0.1ms) When VI > V' (V> 0) outside the S-curve region
Acceleration rate (ADV) = AT(S) X 10000 (ADVS > ADV). V=V'+ADV

. _ — LV X Ts (0.1ms) When VI < V' (V> 0) outside the S-curve region
Deceleration rate (BDV) = BT(s) X 10000 (BDVS < BDV): V=V'+ BDV

. . — LV X Ts (0.1 When QS=0N (V'> VI }:
Quick stop rate (QDV) = Gy x o8 VavqDV

Acceleration rate in the S-curve region (ADVS) = ADVS' + AADVS:
where ADVS' = ADVS previous value

_ _ADV X Ts (0.1ms) When VI > V' {(V'> 0) inside the 8-curve region
AADVS = L AT(s) X 10000 (ADVS < ADV): V=V' + ADVS
Deceleration rate in the S-curve region (BDVS) = BDVS' &+ BBDVS:
where BDVS = BDVS previous value

BBDVS = BDV X Ts (0.1ms) When VI < V' (V> 0) inside the S-curve region
BBT(s) X 10000 (BDVS > BDV): V=V'+ BDVS

V' : previous speed output value
VI : speed reference input
Ts : scan time set value {ms)
4-105

[@LAU InstructionJ

4-106

The current acceleration/deceleration speed (DVDT) is output after the following operation is ¢
out: ; .
. , r) ‘
During acceleration inside S-curve region: DVDT = ADVS
During acceleration outside S-curve region : DVDT = ADV
‘During deceleration inside S-curve region : DVDT = BDVS
During deceleration outside S-curve region : DVDT = BDV

The speed increase upon holding (ABMD) is output after the following operation is performed.

_ DVDT X DVDT
2°X AADVS(BBDVS)

When the "line is running" sig‘néll {RN) is "OFF“', V=0, DVDT=0, and ABMD=0 are output.

ABMD

[Operation of the Register]
AT F TB 11 | g O:stored X :not stored
20100 ® : indeterminate .
(Stored or not stored depending on the case.)
*1: Will be stored if the operation starts with a |- . Will not be stored if the operation does not start with a |- .
*2: Will not be stored if the operation starts with a f—. Will be stored if the operation does not start with a ||-.

[Example(s)] fnteger type operation ' _
Use MWO00100 to MW00111 for the parameter table.

- MW00010 < Input value
SLAU ,IT\.JIAOOlOO ‘ N ' ﬁMWQ'(_)Oll :

; T
SLAU output value

Head address of parameter table

Real number type operation
MF00200 to MF00218 are used for the parameter table. °

-MF00200 < Input value

. SLAU onozoo : jMFogozz
. . . il

SLAU output value

Head address of parameter table

ISpeedﬂ\
. V)

1
VI n
(100%%)

At acceleration At deceleration

0 S-curve Linear é-cu.rve S-curde Linear *S-eurve Time (t)

region] region _ | _region region region region
T B} B T T

AAT 1 - VAAT BBT ! ' BBT
I R | P E——
' AT : BT |

Acceleration Acceleration Deceleration Deceleration
' starts completed starts completed

Fig. 4.12 Motion by SLAU

4. BASIC INSTRUCTIONS
| PWM Instruction

.11.13 PWM Instruction

[Format] | Head Address of Parameter Table]

PWM Register address (except for # and C registers)
Register address with subscript (except for # and C registers)

[Description] The PWM instruction converts the value of the A register to PWM as input value

(-100.00 to 100.00%, units: 0.01%), and the result is output to the B register and the
parameter table,

Double-length type integer operations and real number type operations are not allowed.
Time of ON output and number of ON outputs are expressed as follows.

Time of ON output = PWMT(X+10000)
20000
Number of ON outputs = PWMT(X+10000)
Ts X 20000

X: input value
Ts: scan time set value (ms)
‘When 100.00% is input: all ON

When 0% is input: 50% duty (50% ON)
When -100.00% is input: all OFF

When the PWM reset (PWMRST) is "ON", all internal operations are reset. PWM op-
erations are performed with that instant as the starting point. After powering up, first
turn "ON" PWMRST and clear internal operations. Then use the PWM instruction,

Table 4.33 Table of PWM Instruction Parameters

ADR [Type | Symbol Name Specification /0
0 W |RLY Relay I/O Relay input, relay output *! IN/QUT]
1 W | PWMT |PWM cycle PWM cvcle (1 ms) (1 to 32767 ms) IN
2 W {1 ONCNT [ON output setting timer [ON output setting timer (1 ms) OuUT
3 W | CVON [ON output count timer |ON output count timer (1 ms) OUT
4 W | CVONREM | ON output count timer remainder | ON output count timer remainder (0.1 ms) ouT
5 W_| OFFCNT |OFF output setting timer| OFF output setting timer (1 ms) OUT
b W | CVOFF |OFF output count timer | OFF cutput count timer (1 ms) ouT
7 W | CVOFFREM | OFF output count timer remainder | OFF output count timer remainder (0.1 ms) ouT
*1: Relay I/0O Bit Assignment 7
BIT Symbol Name Specification 170
0 PWMRST |PWM reset "ON" is input when PWM is reset IN
2to7 —— |(Reserve) Reserve relay for input IN
8 PWMOUT |PWM output PWM is output (two-value output: ON=1, OFF=0) OUT
9to F ——— |(Reserve) Reserve relay for output ouT

[Example(s)] MW00100 is used as PWM input and MW00200 to MW00207 as a parameter table.

. PWM reset with the
| SBOO{OIOO3 MB?E?OOO i first scan of DWG.L
' ~ (SB000001 when
|- MWO00100 <——FWM Input value d with DWG
PWM MAQ0200 usecwi H)

Head address of parameter table

4-107

[Block Read Instruction (TBLBR) |

412 Table Data Operation Instructions
When an error occurs at the execution of table data operation instruction, an error code is set to
register and B register is turned ON. For the error codes, refer to Table 4.34.
* . Table 4.34 List of Errors '
Error code Error name Contents
0001H | Reference table not defined The target table has not been defined.
0002H | Outside row number range The row numbers of the table element are not i
: _ ¥ . the range of the target table.
0003H | Outside column number range The column numbers of the table element are n
' in the range of the target table.

0004H | Wring number of elements The number of target elements is not correct
0005H | Insufficient space in storage destination [Area for storing is not adequate.
0006H | Wrong element format ’ The format of the specified element-is wrong.
0007H | Cue buffer error An attempt is made to read the cue buffer when

- is empty, or the buffer is written to by point

advance when it is full.
0008H | Cue table error The designated table is not a cue type table. I
0009H | System error An unexpected error is detected internally in tl:‘
' system during instruction execution.
4121 Block Read Instruction (TBLBR) _

[Format] ' [Head Address of Transfer Destination Data) [Heaﬂ Address of Parameter Tabr

TBLER Transfer Register address (except for # and Register address
source table| * | C registers) Register address with
name - Register address with subscript subseript

{except for # and C registers)

[Descnptlon] The block read instruction consecutively reads, in block format, elements of the file registez

table speclﬁed by table name, row number, and column number. The instruction then store
the elements in a consecutive region beginning with the specified register. The type of th
elements read is automatically judged based on the table specified. The format of the registe
stored at is ignored The read value is stored according to the table element format withou
format conversion. ;
In referencing a table, if there is anything mvahd in the name, row number, column number,
or insufficient data length storage, an error is reported and the data is not read. The contents
of the register for storage are kept.

Upon normal completion, the number of words transmitted is set in the A register, the B register

turns OFF. When an error occurg, an error code is set in A register, and B register turns ON.

For error codes, refer to Table 4.34,

Table 4.35 Tahle of Block Read Instruction Parameters
ADR| Type| Symbol Name : ' Specification - .- I
0 L | ROW1 | Table element beginning row number | Target table element beginning row number (1 to 65535) . | IN
2 L | COL1 |{Table element beginning column number| Target table element beginning column number (1 to 32767) | IN
4 |- W | RLEN |Number of row elements Number of row elements (1 to 32767 IN
5 W | CLEN | Number of column elements Number of ¢column elements (1 to 32767) IN

4-108

{Operation of the Register]

- [Example(s)]

- * :indeterminate
X 1O ' x1010 (Stored or not stored dependmg on the case.)
From the table defined as TABLE 1, using DW00010 to DW00013 as a parametez
table, data (element type is integer type) from the starting table element position tc
the end position are stored in block form in the area starting from MW00100.

, i o MBOOOOOO!
‘'TBLBR TABLE1, MA00100, DAG0010
= MWQ0011

AJF |B |1 J“ (O:stored X':not'stored -

12.2

4. BASIC INSTRUCTIONS
[Block Write Instruction (IBLBW)|

Block Write Instruction (TBLBW) ' '

[Format] _ [Head Address of [Head Address of
Transfer Destination Data] Parameter Table]
ransfer source table Register address (except Register address
TBLEW [Iame] ? for # and C registers) ; Register address with
Register address with subscript
subscript (except for # and
C registers)

[Description] The block write instruction consecutively stores a consecutive region beginning with
the designated register, using block format in elements of the file register table specified
by table name, row number, and column number. The data is processed assuming the
form of the elements in the storage and the format of the storage source register
conform.

In referencing a table, if there is anything invalid in the name, row number, column
number, or insufficient length at data destination, an error is reported, and the data
is not read. The contents of the register for storage are kept.

Upon normal completion, the number of words transmitted is set in the A register,
the B register turns OFF. When an error occurs, an error code is set in A register, and
B register turns ON. For error codes, refer to Table 4.34.

Table 4.36 Table of Block Write Instruction Parameters

ADR

e | Symbol Name Specifieation /0

ROW]1 | Table element beginning row number | Target table element beginning row number (1 to 65635) | IN

COL1 |Table element beginning column number |Target table element beginning column number (1 to 32767) | IN

RLEN | Number of row elements Number of row elements (1 to 32767)

OO

|5 S

Z|2

CLEN | Number of column elements Number of column elements (1 to 32767)

[Operation of the Register]

ATF TB 11] J] O:stored X :not stored
X 1O X100 * :indeterminate
(Stored or not stored depending on the case.)

[Example(s)] From the table defined as TABLE 1, with DW00010 to DW00013 as a parameter
table, data (element type is integer type) from the starting table element position to
the end position are stored in block form in the area beginning with MW00100.

MBOOOGOO]
TBLBW TABLE1, MA00100, DAG0010
= MW00011

4-109

| Row Search Instruction (TBLSRL)—l

4123 Row Search Instruction: Vertical Direction {TBLSHL)

[Format]

TBLSRL [

Naﬁ:le of t:.able to be
searched.

[Head Address of
Search Data|

for # and C registers)
Register address with

{Head Address of
Parameter Table}
] Register address (except [Register address

subscript (except for # and

C registers)

Register address wit
subscript

"[Deseription] The row search instruction searches the column element of a file register table specifie
by table name, row number, and column number, and if there is data which matche
the data of the register, reports that row number. The type of the data to be searche
is automatically judged based on the table specified.
In referencing a table, if there is anything invalid in the name, row number, colum

number, or insufficient length at data destination, an error is reported.

Upon normal completion, the B register turns OFF. If matching column element:
were found, a "1" is set 1n the search result, and in register A, the corresponding ro

number is set. If matching column elements were not found, a "0" is set in the searc
result. When an error cccurs, an error code is set in A register, and B register turn.
ON. For error codes, refer to Table 4.34.

Table 4.37 Table of Row Search Instruction Parameters

ADR |Type| Symbol Name Specification i
0 L |ROW1 |Head row number of table element | Head row riumber of the target table element (1 to 65535) |[IN
2 L {ROW2 |Last row number of table element] Last row number of the target table element {1 to0 65535) | IN
4 L. | COLUMN|Table element c_o!umn number | Column number of the target table element (1 to 32767 IN
6 | W|FIND |Search result Search results 01

: 0: No matching row 1: Matching row exists

4-110

[Operation of the Register]

A

F

B

1

dJd

X

O

X

O

O

(): stored X : not stored

*

: indeterminate
(Stored or not stored depending on the case.)

[Example(s)] The table defined as TABLEL1 is searched for data which matches MW00100 (wher

the type of the searched table is inte
table.

o MBO000000
TBLSRL TABLE1, MA00100, DA00010 ————O—'
: = MWO00011

ger) with DW00010 to DW00013 as a parameter

4. BASIC INSTRUCTIONS
| Column Search Instruction (TBLSRC) |

.12.4 Column Search Instruction: Horizéntél Direction (TBLSRC)

[Format] {Head Address of [Head Address of
Search Data] Parameter Table]
Name of table to be Register address (except Register address
TBLSRC [searched.] ’ for # and C registers) N Register address with
Register address with

subscript
subseript (except for # and)
C registers)

[Description] The column search instruction searches the row element of a file register table specified
by table name, row number, and column number, and if there is data which matches
the data of the register, reports that column number. The type of the data to be searched
is automatically judged based on the table specified.

In referencing a table, if there is anything invalid in the name, row number, column
number, or insufficient length at data destination, an error is reported.

Upon normal completion, the B register turns OFF. If matching row elements were
found, a "1" is set in the search result, and in register A, the corresponding column
number. If matching column elements were not found, a "0" is set in the search result.
When an error occurs, an error code is set in A register, and B register turns ON. For
error codes, refer to Table 4.34.

Table 4.38 Tahle of Column Search Instruction Parameters

ADR| Type| Symbol Name Specification 110
0 L |ROW |Table element row number Row number of the target table element (1 to 65535) IN
2 L. COLUMN]I | Head column number of table element | Head eolumn number of the target table element (1 to 32767} |IN
4 L |COLUMN2|Last column number of table element{ Last column number of the target table element (1 to 32767) |IN
6 W [FIND |Search result Search results ouT
0: No corresponded column 1: Corresponded column exists

[Operation of the Register]
"TATFIB 1 J (O : stored X : not stored

* :indeterminate
() x ()) .
X (Stored or not stored depending on the case.)

[Example{s)] The table defined as TABLEL is searched for data which matches MW00100 (when the
type of the searched table 1s integer} with DW00010 to DWO00013 as a parameter table.

MBO0000C0O l
TBLSRC TABLE1, MAQ0100, DA0Q0O10
= MW00011

4-111

| Block Clear Instruction (TBLCL) |

4125 Block Clear Instruction (TBLCL)

[Format)] I ; [Head Address of
Parameter Table]
. bl Register address .
TBLCL [Targetija en:cm}ze] s [Register address with]
‘ . subscript

[Description] The block clear instruction clears the data of the block element of a file register tabl
gpecified by table name, row number, and column number. If the type of the elemen
is a character string, a space is written, and a 0 is written if it is a numerical value.
both the head row number and the head column number of the table elemen
destination are 0, the entire table will be cleared. In referencing a table, if therei
anything invalid in the name, row number, column number, or insufficient length a
data destination, an error is reported, and the data is not read.

Upon normal completion, the number of words cleared is set in the A register, the
. register turns OFF. When an error occurs, an error code is set in A register, and
register turns ON. For error codes, refer to Table 4.34.

Table 4.39 Table of Block Clear Instruction Parameters

Symbol : Name . ' Specification
1. |ROW |Head row number of table element |Head row number of the target table element {0 to 65535)

W |RLEN | Number of row elements Number of row elements (1 to 32767)
W |CLEN |Number.of column elements Number of column elements (1 to 32767)

g
IN
L. | COLUMN| Head column number of table element | Head column nuiber of the target table element (1 to 32767} IN
IN
IN

o | oo |B
=
3

[Operation of the Register] - : <
A T F 1B 11 |J (O : stored X : not stored

: * :indeterminate
x|]C|x[O}O (Stored or not stored depending on the case.)

[Example(s)] The designdi_:ed block in the table defined as TABLEL is cleared using DW00010 to
DWO00013 as a parameter table.

MB000000
TBLCL TABLE1, DA00010 ———O—-]

=> MW00011

4-112

[Format]

[Description]

4. BASIC INSTRUCTIONS
| Inter Table Block Transfer Instruction (TBLMV) |

i

12.6 inter Table Block Transfer Instructiori (TBLMV)

[Head Address of
Parameter Table]

TBLMYV | Transfer source table Transfer destination Register address .
name s table name ’ Register address with

subseript

The inter table block transfer instruction transfers the data of a block element of a file
register table specified by table name, row number, and column number to another
block. Transfers both between different tables and transfers within the same table
are possible, but if the type of the transfer source and transfer destination are not
identical, an error is reported, and the data cannot be written.

In referencing a table, if there is anything invalid in the name, row number, column
number, or insufficient length at data destination, an error is reported, and the data
is not read.

Upon normal completion, the number of words transferred is set in the A register, the
B register turns OFF. When an error occurs, an error code is set in A register, and B

register turns ON. For error codes, refer to Table 4.34.

Tab

le 4.40 Table of Inter Table Block Transfer Instruction Parameters

Symbol

Name Specification /0

ROW1

Head row number of tabie element |Head row number of the transfer source table element] IN
(1 to 65535)

Head column number of table element| Head column number of the transfer source table IN
element (1 to 32767)

RLEN

Number of row elements Number of transfer row elements {1 to 32767 |IN

CLEN

Number of column elements Number of transfer column elements IN
(1 to 32767)

ROW2

Head row number of table element | Head row number of the transfer destination table IN
element (1 to 65535)

Type
L
1.] COLUMN1
W
W
L
L

COLUMN2

Head column number of table element| Head column number of the transfer destination table | IN
element (1 to 32767)

[Operation of the Regiéter]

[Example(s)]

AIF B I J (O stored X : not stored
X OIXTOlO | * :indeterminate

(Stored or not stored depending on the case.)

There are tables defined as TABLE1 and TABLEZ2. The designated block in TABLE1
is transferred to the designated block in TABLE2 using DW00010 to DW00015 as a
parameter table.

MBOOOOOO’
TBLMV TABLE1, TABLEZ2, DA00010

= MW00011

4-113

[Cue Table Read Instruction (QTBLR, QTBLE) |

4127 Cue Table Read Instruction (QTBLR, QTBLRI)

[Format] ‘ [Head Address of {Head Address of
. Transfer Destination Data) Parameter Table]
QTBLR][Transfer source table 7 Register address (except Register address
name- ’ for # and C registers) ; Register address wit
LQTBLRI Register address with subscript
: subscript (except for# and ;
C registers)

[Description] The cue table read instruction continuocusly reads column elements of a file registe
: table specified by table name, row number, and column number, and stores it i
consecutive areas beginning with the specified register. The type of the element to b
read is automatically judged based on the table specified. The type of the register fo
storage is ignored. The read value is stored according to the table element forma
without type conversion. The cue table read pointer is not changed by a QTB
instruction. The cue pointer is advanced one row by a QTBLRI instruction. [
referencing a table, if there is anything invalid in the name, row number, colum
number, insufficient length at data destination, or the cue buffer is empty, an error &
reported, the data is not read, and the cue pomter does not advance. The contents o

the register for storage are kept.
Upon normal completion, the number of words transferred 1s set in the A reglster th
B register turns OFF. When an error occurs, an error code is set in A register, and
register turns ON The pointer value does not change. For error codes, refer to Tabl

4.34.
Table 4.41 Table of Cue Table Read Instruction Parameters :
ADR [Type | Symbol | . _ Name "Specification ‘ 17
0 L | ROW |Relattve row numbers for table elements| Relative column number of the target table element I
‘ (0 to 65535)
2 L | COLUMN|Head column number.of table element | Head column number of the target table element | IN
: ' ‘ {110 32767)
4 W | CLEN |Number of column elements Number of column elements to be continuously | IN
' ‘ read out (1 to 32767) :
5 W | Reserve ,
6 L |RPTR |Read pointer Read pointer of the cue after execution 0y
8 L | WPTR |Write pointer - | Write pointer of the cue after execution QU
By setting relative row numbers for the table elements, the actual row position read
will vary as in Table 4.42. .
Table 4.42 Settings for Relative Row Numbers for Table Elements
Relative row numbers - Row read ' Remark
0 Read pointer row Pointer advance for QTBLRI only
1 Write pointer row No pointer advance
2 (Write pointer row)-1 No pointer advance |
3 (Write pqinter row)-2 No pointgr advance
n ;. . | (Write pointer row)-(n-1) . | No pointer advance

[Operation of the Register] ;
A TF 18 11 | g | O:stored X:not stored

* :indeterminate
x [0 x]O]0O (Stored or not stored depending on the case.)

[Example(s)] Column element data (element format assumed to be integer) from the table defined
as TABLET1 is stored for the number of column elements beginning with MW0010(
using DW00010to DW00012 as a parameter table.

' ' MBO000000 l
QTBLRI TABLE1L, MA00100, DA00CG10
= MW00011

4-114

12.8

. 4. BASIC INSTRUCTIONS
| Cue Table Write Instruction (QTBLW, QTBLWI)|

Cue Table Write Instruction (QTBLW, QTBLWI)

[Format] {Head Addressof [Head Address of
Transfer Source Data] Parameter Table]
[QTBLm[Transfer destination] Register address ' Register address
table name * | Register address with| » Register address with
QTBL l:subscript.] [subseript]

[Description] The cue table write instruction continuously reads data from consecutive areas
beginning with the specified register, and writes it to column elements of a file register
table specified by table name, row number, and column number. Data is processed
assuming the format of the element of the table at the location to be stored at is the
same as the type of the register storage source. '

The cue table write pointer is not changed by a QTBLW instruction. The cue pointer
is advanced one row by a QTBLWI instruction.

In referencing a table, if there is anything invalid in the name, row number, column
number, insufficient length at data destination, or the cue buffer is full, an error is
reported, the data is not written, and the cue pointer does not advance.

Upon normal completion, the number of words transferred is set in the A register, the
B register turns OFF, When an error occurs, an error code is set in A register, and B
register turns ON. The pointer value does not change. For error codes, refer to Table

4.34.
Table 4.43 Table of Cue Table Write Instruction Parameters
ADR |Type | Symbol Name Specification IO
0 L |ROW |Relative row numbers for table elements | Relative column number of the target table element |IN
(0-65535)
2 L | COLUMN|Head column number of table element| Head column number of the target table element |IN
(1 to 32767)
4 W | CLEN |Number of column elements Number of column elements to be continuously |IN
written (1 to 32767)
5 W | Reserve
6 L |RPTR |Read pointer Read pointer of the cue after execution QUT
8 L | WPTR |Write pointer " | Write pointer of the cue after execution OuT,
By setting relative row numbers for the table elements, the actual row position write
will vary as in Table 4.44.
Table 4.44 Settings for Relative Row Numbers for Table Elements
Relative row numbers Row write Remark
0 Write pointer row Pointer advance for @QTBLWI only
1 Write pointer row No pointer advance
2 (Write pointer row)-1 No pointer advance
:_3 (Write po_inter row)-2 No pointc?r advance
n (Write pointer row)-{(n-1) No pointer advance

[Operation of the Register]
A F B i J (O: stored X : not stored

® :indeterminate
XJOIX[O]O (Stored or not stored depending on the case.)

[Example(s)] Integer form consecutive data for the number of column elements beginning with
MWO00100 is written in column element data in the table defined as TABLE1 using
DWO00010 to DW00013 as a parameter table.

MBOOOOOO(
QTBLWI TABLE1, MA00100, DA00010
= MWO00011

4-115

| Cue Pointer Clear Instruction (QTBLCL) |

4.12.8 Cue Pointer CJeér Instruction (dTBLCL)

4-116

[Format] QTBLCL [Transfer source table name]

[Description] The cue pointer clear instruction returns the cue read and cue write pointer of the fil
register table specified by table name to initial status (first row).
Upon normal completion, a "0" is set in the A register, the B register turns OFF
When an error occurs, an error code is set in A register, and B register turns ON.
For error codes, refer to Table 4.34.

. [Operation of thg Register]

LA I B T1J (): stored X : not stored

; * :indeterminate
X]O[X] 010 {Stored or not stored depending on the case.)

[Example(s}] 'The cue read and cue write pointer of TABLE] are reset to initial status.

: ' . MB000000
" QTBLCL TABLE! —)——I

=>MW00011

5. 8FC PROGRAMMING

5 SFC PROGRAMMING

The programming method, in which SFC's (sequential
function charts}) are used, is described in this chapter.

5-1

51 Configuration of an SFC Program

As shown in Fig. 5.1, an SFC program is composed of an SFC flowchart, an SFC action box, and a
SFC output definition time chart. :

Ladder program : - [SFC flow chart . [SFC action box
H—L Fod —— % > ABOX S000
. . -+ ‘ SBOK 5001

]

|

lixach

% SFC Output Definition Time Chart

Fig. 5.1 Configuration of an SFC Pi'ogram

5.2 Execution of SFC

As shown in Fig. 5.2, the SFC program is executed by the SFC instruction in the ladder program.
The SFC program is executed through step transition control, which is managed by the use of systen{
step numbers. The system automatically assigns a system step number to each step name. The as
signed system step number can be checked at the SFC Qutput Definition Time Chart screen of thq
CP-717. Since the system step number will be changed when an SFC step is added or deleted, do no
make changes in the SFC flowchart while the line is running.

i SFC
| VB VB AAAAAA |
1t EXECUTE ouT . O
I : DATA |
v
A = VWAAAAA
Fig. 5.2 SFC Instruction
Table 5.1 VO Registers
[Registers that can Description

VO Symbol |0 designated (V=)
VBUOD {S,1,0,M,D,C, |- SFC execution instruction
#

(EXECUTE) .- Execution control (step transition control) of the SFC is carried out
when this register is ON.
: - The current system step will always be set to the initial step when this
| register is set to OFF. .
VA LU M, D - Designation of the head register number of the register area for the

SFC system operation. _
- See Section 5.3, "SFC System Operation Register” for details.
VBAAAAAA O, M, D - 8FC step transition output (becomes ON when step transition is carried
(OUD) out). .
- Within a parallel process, this will contain the result of the final parallel
process sequence.
VW AAAAA O, M,D - Designation of the user step number output corresponding to the current
\ system step
f - See Section 5.7, "Step Name Designation Method™ for details.

5-2

5. SFC PROGRAMMING

3 SFC System Operation Registers

The system operation registers necessary for the execution of an SFC program are set up as shown in
Table 5.2. When an SFC program is to be used, these registers may not be used for other purposes.

Table 5.2 Assignment of the SFC System Process Registers

Register No.

Name

Description

VWL 00

System step - current value

System step number when an ordinary process is being carried out™.

01

System step - previous value

System step number prior to transition when an ordinary
process is being carried out’.

02

Transition timer for count

Count register used for the transition timer when an ordinary
process is being carried out™.

03

User step search input

For searching for the system step corresponding to the user step.
User step no. : Bit 0 to Bit E. search execution command : Bit F.

04

SFC output bit "- 1

Output data from the SFC Qutput Definition Time Chart (0 to 15).

05

SFC output bit - 2

Output data from the SFC Output Definition Time Chart (16 to 31).

06

SFC output bit - 3

Output data from the SFC Output Definition Time Chart (32 to 47).

07| SFC output bit 3- 4 Output data from the SFC Output Definition Time Chart (48 to 63).
08

For SFC parallel process For gystem use

control '
09

10

17

For SFC function operation

Step number of each process when a parallel process is
being carried out.™

18

25

For SFC function operation

Count register used for the transition timer for each parallel
process when a parallel process is being carried out.™

26

SFC output bit = - 5

Output data from the SFC Output Definition Time Chart (64 to 79).

27

SFC output hit 2 - 6

Output data from the SFC Output Definition Time Chart (80 to 95).

28

SFC output bit ™ - 7

Qutput data from the SFC Qutput Definition Time Chart (96 to 111).

29

SFC output bit ™ - 8

Output data from the SFC Output Definition Time Chart (112 to 127).

"1: QOrdinary process : Only a single step is processed.

*2; Parallel process :

*¢ . SFC output bit :

A plurality of steps are processed simultaneously and in parallel by parallel

process branching,

In parallel processing, the logical sum (OR) of the outputs of the parallel pro-

cess steps is output.

5-3

5.4

SFC Flowchart

The SFC flowchart is prepared using steps, transition conditions, and connection designations.
sequence proceeds from the initial step in accordance with the transition conditions and the transitio;
to the next step is performed when conditions are satisfied. The transition of the execution of t
steps is performed from top to bottom. If the SFC program-cannot be prepared with just one flo
chart, it can be divided into a plurality of flowcharts (or composed of subroutines).

B Step : One step in a sequence.
- Expressed with a box (|:i) and a step name (with 6 or less alphanumerlc or symboli
characters). .
- A step can be in the logm state of ON (active) or OFF (inactive) and when a step becomes O
(active), the SFC Action Box associated with the step is executed.
- A system step number controlled by the system is ass1gned to the step automatlcally The SF
is controlled by means of these step numbers.

Bl Transition condlt!on The logm conthlon that must be satisfied for step transition.
- NO contact condition (——) : Step transition is carried out when ON.
- NC contact condition (===) : Step transition is carried out when OFF.
- Timer transition condltlon (+) Step transition is carried out a.fter the set time.

B Single-token Structure (de5|gnat|on of ordinary branchmg connection) -
- An ordinary process branching or convergence 18 expressed with a single lin
(—) and only one of the branch processes is executed. If a plurality of conditions are satisfied
the condition at the left side has priority.
- Branching des1gnat10n convergence demgnatlon and converging connection de51gnat10n ma]
be used.

Bl Multi-token, Structure (designation of parallel branching connection)

- A parallel process branching or convergence is expressed with a double line (—) and paralle

processes are executed simultaneously and in parallel.

- Branching designation, convergence designation, and converging connection designation maj
be used..

- The number of parallel process branches must 6 or less.

* At the branching point of a parallel process, the parallel processes are started simultaneousl;

after the transition to the step.

- At the parallel process convergence pomt the transition to the step following the convergency

point is carried out when all of the parallel processes have reached the step prior to thd

convergence point and the transition conditions are satisfied.

01 [Sample Program

ISFCIFLOW CHART DWG LO1.

UT #01: NT # 001: ST # 01 STEP. REG-DW00000 . . STEP -029
1 0000
i F_1Bo0150 . . A
t oooz | s-03 17 [s-oa] ['s-os]
‘ % pRogO120 DBOCO122 pBOOC133
1 0oos [s-02] [s-04] [s-os]
L cco0ss l d
1 0012
? noooso-c ? MBOOOS22 DRO00OSS * bmooo15a
1 0014 | $-11 1 - {s-12] [s-13] [s-15]
* DRO0OISE # MBOOG431 DWoo100 PROCO2ZO
1 o022 ‘
l MRO00413 T DBooOSEF

i'—l

1 0029
CURRENT STEP - §-00

.

§ - EEA < R o B

5. SFC PROGRAMMING
SFC Action Box

The SFC Action Box is prepared using the ABOX and SBOX instructions. The program, that is to be
executed when a step in the SFC flowchart becomes ON (active), is prepared in the SFC Action Box.
This program is prepared with ladder programming language and text type language. One step of an
SFC Action Box Program will consist of the instruction sequence up to the ABOX instruction or SBOX
instruction of the next step and the SFC Action Box Program comprising all steps is ended with an
AEND instruction .

It is not necessary to create an action box for each step. An Action Box is created only for steps which
require processing.

H ABOX Instruction
With this instruction , the corresponding program is executed on each scan from the point at which
the corresponding step is entered and until the transition to the next step is carried out.

B SBOX Instruction

With this instruction , the corresponding program is executed just once at the point of the transition
to the corresponding step.

UT # 01: NT # 001: ST # 01 STEP. REG-DW(0000 STEP -019

1 001 ABOX $-00
5] - .
St p S-00 —>| 1 001+ oocoo : - uW13000
Action Box
1 003 ¥ 01000 = MW130901
1 005 530X $=01
Step S-01 3
ACtiOIl :B()x 1 906 F MW13001 + 91000 = Q2000 + 02000 - MW13002
1 011 ABCOX 5=-02
1 012 llopnnoo . HBOOTT00
Step S-02 —2{ F1 014 ulo;un .
3 1 MNBOO7701
Action Box it o
01l6 4]
1 1 00:4902 HBQO7702
3 Cl8 AEND
End of All _
Action Boxes
B E K B K M B B P
.\

5-5

SFC Output Definition Time Chart S

The SFC Output Definition Time Chart is used to designate the output data for each SFC step in
time chart form. The output data that are designated at the SFC Output Definition Time Chart
output to the SFC system operation registers (VW04 to VWO 07, VWL 26 to VWI]2
upon execution of the SFC program. The output data (VW04 to VWD 07, VWL 26
VW] 29) are cleared to 0 before SFC execution, and updated after SFC execution. Therefore, th
output data can not be referenced inside the Action Box. The following items should be set in the tim
chart. R : : :
Bl Stepname :

Each step name is displayed in each column.
H Number of output points . :

Can be designated in multiples of 16 (max. = 128).
H Outputname :

’ Can be specified with 8 or less alphanumeric characters.
This is used as a comment. .

| . A CP-316
UT # 01: NT:# 001: ST # 01 OUTPUT=16 STE -019
Bit No. Symbol - . System Step
ya J 000 - 001.: 002 003 004 003 008 ™ 007
Me. | ouzPUT J3-00 [s-¢1 [s-02 [3-08 |s-04 [s5-05 [s-o08 |s-o07<— Step Name
000 | STOPLAMP |r=cnna
COLIRUNLAMP | 3 Juewwe= cmswee | e o s s [Sessnn | .- -—————
gozjopBNCMDREI)] @21 00| 0 | emwree-
003 [CLOSECM] - —
o4 opENCMD2) | 00 1 | |mewmee=
oos5|crLosBeM2}))}V | mem———
005 |WEIGHTCM D L LT Ry e I L T AR T PP T)

00T | CONVIRUN
008 |CONYIRUN
009 [INEXISIPl jomwwmwanf | = |wecess | cccces
OCIO|INVIRUN § 2 j=m=c==
011 | INV2RUN fom-——
012 | AUXLAMP e | e | | st mew | nemm———
013 |CMDERROR
ol14|woRKswy | 2 | [| jeueeeee ssccas
015 [NEXTISTIL wrwrnm | qmpmmnf 0 [| ececss|eccccs=

Output data when step S-00 is executed
This data (H0201) is stored in VW[04.

o 1o cr] rLee i CxDo Y
.

5. SFC PROGRAMMING
Step Name Designation Method

The user may designate step names freely as long as they are within 6 alphanumeric characters in
length and start with a character freom "A" to "Z". However, use the following designating method if the
user step number of a specific step name is to be taken out.

— Step Name Designation Method

Stepname : S nnnnn
T User step number (1 to 32767)*
» The initial character must be an "S."

(*) The user step number is a designated number given to a step by the user. It is not the
number managed by the system.
{Exampies) S0001, 50002, S0100, etc.

SFC |

it EXECUTE _OUT O] | Execution of an SFC program.

VA 00

= VwWOooon

The user step number of the
currently executed SFC step is

| stored. When executing a multi-

| token, the user step number of the
| last executed SFC step is stored.

For step names designated by another method than the one above, the user step number becomes
"0." In this case, a user step number which corresponds to the step name is not taken out.

Taking Out System Step Nos.

The SFC controls the execution steps with the system step numbers that the system assigns
automatically. In order to change the SFC execution forcibly to another step, take out the system step
No. and change the execution step.

If an execution step is to be changed forcibly, such as in forced execution of a error processing sequence,
the program is prepared using the SFCSTEP instruction . The SFCSTEP instruction takes out the
system step number assigned to the step name. A program example of a error processing sequence is
shown below.

Error |
! i I
' 1A l
IFON Step name |
¢ |
ERR When an error occurs:

SFCSTEP 501 = VWOIIoo | Change the execution step forcibly by

| taking out the system step number of

IEND l ERI_ISO_I (_error processing step) and

SFC | stormgit _mto the system step current

I EXECUTE OUT o | value register (VW (111 00).
DATA |
VALTI00 |
|
NOTE

1. If forced transition is to be performed, a timer transition condition cannot be used as a transition
condition for the step which is the destination of transition.

2. Do not execute forced transition of an execution step from a step located within a multi-token
structure.

5-7

5.9

5-8

Precautions upon Preparation of an SFC Program

Note the precautions shown in Table 5.3 upon preparing an SFC program. |

Table 5.3 Precautions upon Preparation of an SFC Program

Precaution See Section
Only one SFC program can be programmed in one DWG. , . —
The maximum number of steps in an SFC program is 500.- . —

A branching or converging connectmn cannot be designated below and above 5.9.1
one transition condition.

A convergence point must be provided if a multi-token structure is branched 5.9.2
The number of branches in a multi-token structure must be 6 or less. 5.9.3

[One cannot prepare a plurality of subroutines which have the
same start step name and which contain a multi-token structure.]

A subroutine containing a multl-token structure cannot be called from - within 5.94

a multi-token block.

A subroutine containing a mu.ltl token structure cannot be called from with 594

a single-token block unless the conditions for subroutines are satisfied.

‘Subroutines may only be nested up to 4 times {depth of the macro) in each 5.9.4

step in a single-token or multi-token block.

Jumping to a step in the middie of another block cannot be performed froma 594

step inside a single-token or multi-token block.

The timer transition instruction cannoct be used i na subroutine called from - 594

a multi-token structure. .

The same step nameé cannot be used in different blocks. 5.9.5
—l Subroutine (Macro) JI

In cases where a step leads to more than 6 branches, the series of steps may be taken out and
newly programmed as a separate block by assigning a representative step to the main routine.
Such a block is called a subroutine (macro).

Main Routine . Subroutine

]:e— Start step [ﬂ_smﬁ

:I:' T T
[L |

Dummy d 4 1
(SB000004 ete.) T T

| b]

L 1

E::J(_ End step _ | Eﬁrstep

Block

A series of steps from a start step to an end step is called a block.

.9.1

5. SFC PROGRAMMING

Restrictions concerning Branching and Converging Connections

A single-token or multi-token branching or converging connection cannot be designated below and
above one transition condition. Ifbranchmg and converging connections are not designated correctly,
the program cannot be written in. Examples of restrictions concerning branching and converging
connections and correct programming methods are shown below.

{Example 1)
——
I3 1 io
T LR
- - J
L | S L |
4 L
T T
L P]
d
T_iT le

(D Above : return point of a single-token structure
Below : branching point of a multi-token structure

{Example 2)

H

[Ep———_—

(|
LA

.-

———

|
|

i H

=
4

1

]

L _

——emamven
{ L
LA

() Y

P

pas S l

i
|

(AP I

I

(D Above : branching point of a single-token structure
Below :branching point of a multi-token structure

Correct programming

FES A s C s EE .y

1
[
[

d

1

Dumm

~ SB00D004
T

| -

@ Above : convergence point of a multi-token structure
Below : convergence point of a single-token structure

Correct programming

L R T

—-

@ Above
Below

L

T SB000004

L2 L T

: convergence point of a multi-token structure
: convergence point of a single-token structure

5-9

Correct programming

(Example 3)
S
L T —T1
T T
| 1L J
| E._. : , [
T : P i)

@ Above:
Below:

(Example 4)

branching point of a single-token
structure

branching point of a multi-token
structure .

©

-

—

=

L | |

T

T

1
T

4

Umimn

e mmmmm e, -

= SB000004
T

(@ Above: convergence point of a multi-token]
siructure
Below : convergence point of a single-token
: structure
Correct programming
P T 53000004 '
H :

[J

I P

(@ Above- : convergence point of a multi-token structure

Below' : branching point of multi-token structure

1

5-10

5. SFC PROGRAMMING

3.9.2 Restriction concerning Branching and Converging Connections in a Multi-Token Structure

A convergence point must be provided if a multi-token structure is branched.
If branching and converging connections are not designated correctly, the program cannot be written

.

Correct programming

l

R |

v

-

R |

1

~

The multi-token structure remains branched since a step is set as an end
step within a branch of a multi-token structure.

5-11

593

- 5-12

1

Restriction of the Number of Branches in a Multi-Token Structure

If there are 6 or imore branches in one block in a single-token structure, the block may be divided i
two to prepare the program. However, such a program cannot be prepared in the case of a multi-toke:
structure.

The maximum number of steps that can be executed parallel in a multi-token structure is 6. A progra

with more than 6 branches will therefore be erroneous. A program will aiso be exroneous if there ar
a plurality of blocks having the same start step name and containing a multi-token structure (se
Examples 1 and 2). The program cannot be written in such cases. Change the program so that th
number of parallel executed steps will be 6 or less. There are no restrictions in the number of branche
in the case of a single-token structure.

(Example 1)

o kbl

L@

(Exampie 2)

H

@ﬁr%i

S100 L_soos |

.3
i

01

LN

9.4

5. SFC PROGRAMMING

Restrictions concerning Subroutines

Several conditions, which depend on whether the calling source of the subroutine (main routine) and
the subroutine itself are a single-token structure or a multi-token struecture, must be satisfied when
preparing a subroutine in an SFC program. The program cannot be written in unless such conditions

are satisfied.

=
T Bubroutine |, ele-tokenblock | Multi-token block
Main routine

[Single-token block See . See @.
Multi-token block See 3. See @.

@ When calling a subroutine with a single-token block from a single-token block
- A compose error will occur if the following conditions are not satisfied
(Conditions)
1. Subroutines must not be nested more than 4 times.
2. Jumping must not be performed to a step in the middle of the subroutine.

(2 When calling a subroutine with a multi-token block from a single-token block
- A compose error will occur if conditions 1 and 2 below are not satisfied.
- A compile error will accur if condition 3 below is not satisfied.
(Conditions)
1. Subroutines must not be nested more than 4 times.
2. Jumping must not be performed to a step in the middle of the subroutine.

3. The subroutine side must not be branched immediately into a multi-token block.

® When calling a subroutine with a single-token block from a multi-token block
+ Compose error will occur if conditions 1 and 2 below are not satisfied.
- "WARNING" is issued if condition 3 below is not satisfied.
(Conditions)
1. Subroutines must not be nested more than 4 times.
2. Jumping must not be performed to a step in the middle of the subroutine.
3. A timer transition instruction must not be used inside the subroutine.

@ When calling a subroutine with a multi-token block from a muiti-token block
- Compose error will occur.,

5-13

(1) Restrictions concerning Nesting (Depth of Macro) .
Subroutines can only be nested up to 4 times (depth of macro). Prepare the program so t
subroutines will be nes1_:ed only 4 times or less. .

[so00 |‘I\i£[ain Roilﬁne

O o .o o X
(Good)” - (Good) (Good) (Good) | (Poor)
Nesting =1 Nesting=2 - Nesting=3 Nesting=4 : Nesting=5
s / T / T / T %
; P . P i 1

[N) N N

5-14

5. SFC PROGRAMMING

(2) Restrictions concerning Jumpmg
Programs, in which jumping is performed to a step in the middle of a subroutine as shown below,
cannot be prepared Shown below are examples of restrictions concerning jumping and correct

programming methods.

(Example 1)

(Poor Example) Correct programming method

(Example 2)

T
Changeto | ﬁm } [Cs003]

3 (Good Example)
>

%%%%

P ey

%
y

i

. (Poor Exam.?le)

T
| 8100 I
T T
l_?_‘l l__?tﬂ.tls
T :I'
| sy

K

v

.
/‘.E

*/u

l Change to

Correct programming method

ST
il I

e _?Eu |J£Ea_l
i =
| 1]

lJ:ﬁD stz]
- > {Good Example)
5100 |

L LT T T Py

5-15

(3) Restrictions concerning Branching
Branching into a multi-token structure cannot be performed immediately after the start step
a subroutine called by a main routine. Shown below are examples of restrictions concernin
branching and correct programmmg methods.

: - (Bad Example) (Bad Example}
[] Main Routire % _].Subroutine Subroutine

semssmpema. eeesskeesss

— b o -

L L :
J .
i [] -
%’] T
' 1) sea—

. T .

Subroutine (Bad Example) , . Correct programming

e e e e e

— e

-

— -
~_4|__

i
]
I
i

i

k!

-
—

—H
—H H

5-16

5. SFC PROGRAMMING

(4) Restrictions concerning the Timer Transition Condition Instruction
A timer transition instruction cannot be used in a subroutine that is called from a multi-token
structure. If a timer is required, prepare a program in which an on-delay timer instruction is used
outside the SFC (Iadder program) and received by a coil and the coil is used as an NO contact
transition instruction of the SFC. This programming method is shown below.

{(Ladder Program)
' e
A ¢ o —p——o ST o
DEND. _add, e |
tHEt—T50 x}+0- |
P ¢ d £
Pt —T 03 y O
DEND
{SFC Flowchart)

l_j_-_:, Main Routine
(Bad Example)
SFC Loop Circuit
v : (Good Example)
[[s080 | Subroutine ! LELED____‘L
' T T

) #:‘j—-——l_-':—_:]] change to ,~—-7- A
LTse e i e T
| I — C —

‘Lb - d. E — b = d
. :ﬁr 5 =

NOTE
The timer will operate correctly in the following exceptional cases.
However, ordinarily, change the program as shown above to avoid restrictions.

(1) When the following conditions are satisfied in one multi-token block:
{Conditions)
1. Only one subroutine is called from the multi-token structure, and
2. Only one timer transition instruction is used in the subroutine called, and
3. The timer transition instruction is not inside an SFC loop circuit.

(2) When the following conditions are satisfied when there are a plurality of subroutines
called from a multi-token structure in one multi-token block:
(Conditions)
1. There is only one subroutine which uses a timer transition instruction, and
2. The timer transition instruction is not inside an SFC loop circuit.

5-17

595 Restrictions concerning Step Names

With the exception of the start step names and end step names in a'macro, the same step nam
cannot be used for different blocks. This condition applies in common to multi-token blocks an
single-token blocks. Change the step names to prepare the program in such cases. A program cann
be written in if the same step name is used.

. ' (Bad Example)

T

-

g

i
.

[soe0_]
* Step name is overlapped.
lchange to
i
L T «—Change step name

B, T

E.%_IALAML_I
=
(000]

5-18

6. TABLE FORMAT PROGRAMMING

6 TABLE FORMAT
PROGRAMMING

Table format programming methods, by which programs
of a specific application are prepared in an FIF (fill in
form) form by the use of tables, are described in this

chapter. Constant tables, I/O conversion tables, interlock
tables, part composition tables, and other various tables
are made available. Some tables cannot be used with
the programming device CP-717.

6.1

6-2

Types of Table Format Prbgrams

As shown in Table 6.1, there are 6 types of table format programs. For functions, only the M registe
constant table and the # register constant table can be used.

Table 6.1 Types of Table Format Programs

Name

Usage and Function

DWG

Funection

Constant table
(M register)

- Used for setting the various constant data, such as mechanical and
. electrical specifications of equipment, etc., that are used in common
by different drawings.

- Data names, symbols, units, and setting ranges can be designated

Constant table
(¥ register)

- Used for setting various constant data, such as tension control pa-
rameters and position control parameters, that are used exclusively
in a certain drawing.

- Data names, symbols, units, and setting ranges can be designated.

/0O conversion
table

- The I/Q conversion processing parts of various processing programs
may be prepared in a table.

- Is prov1ded with the scale conversion function and the bit sagnal con-
version function.

- Data names, symbols, units, and output conversion ranges can be
designated. ’

Interlock table

- Used for preparing vanous types of interlocks.
- A signal name and symbol can be designated for each input/output.
- An interlock can be prepared as a combination of logical product (AND)

and logical sum (OR) operations using NO contact and NC contact
signals.

Part composition
table

- Used to stimultaneously prepare a plurality of circuits of a fixed pat-

tern, such as solencid circuits, accessory sequence circuits, ete.

- Fixed-pattern circuits can be prepared and registered as standard
- software parts as necessary.

Constant
Table (C register)] -

- Used in setting various types of data constants used in common on

various drawings of mechanical and electrical sources of the equip-
ment.
: The data name, symbol units, setting range, etc can be designated.

(O: can be used, X : cannot be used

NOTE

Make the table format programmmg on the programmmg device CP-717.

.2

6. TABLE FORMAT PROGRAMMING
Execution of Table Format Programs

Each table format program is executed with the XCALL instruction.

DWG/Function Program
XCALL MCTEL P — ?| Constant Table
(M Register)
ICALL IOTBL > i
— 1/0 Conversion
| Table
XCALL ILKTEL pa— >
Interlock Table
ICALL ASMTBL >
- Parts Composition
Table

Table 6.1 Execution Method for Table Format Program

The set values for the constant table (# register) and the constant table (C register) are directly stored
in # register and C register respectively.

Thus, it is not necessary to use the XCALL instruction for the constant table (# register) and the
constant table (C register).

6.3

6.3.1

:

Constant Table (M Register)

The M register constant table is used for setting various constant data, such as mechanical and electri
specifications of equipment, etc., that are used in common by different drawings.

Outline of the Constant Table (M Register)

To use the M register constant table, first a constant table is defined as shown in Fig. 6.2. The cons

. data are then set using the defined constant table.

When the constant table is stored, M register comments are prepared or renewed automatically acco
to the data name, symbol, unit, and register number of each row. These comments are used for comm

Definition of Constant Table

number.

Input of Set Value
v 7'
‘ Generated M Register Comments
Constant Setting Program
) MW10000 ABCDEF ------
MW10001 AAAAAA ---o--
MV10002 BBBESB ------

i

I

display in the program screens and for comment printout upon printout of documents.

- Designation of the table name and drawing

- Designation of the data names, symbols, units,
setting ranges, and storage addresses.

+ Input of various set values

+ M register comments are prepared
renewed automatically when the
register constant table is stored.

Fig. 6.2 Preparation of the M Register Constant Table

13,2

6. TABLE FORMAT PROGRAMMING
Preparing the Constant Table (M Register)

(1) Defining the Constant Table (M Register)
The following items are set in defining the M register constant table A maximum of 200 constants
may be get.
(D Data Name
Designate the data name of the constant,
@ Symbol
Designate the symbol of the constant.
@ Unit
Designate the unit of the constant.
@ Lower Limit
Designate the lower input limit of the constant.
(® Upper Limit
Designate the upper input limit of the constant.
(6) Save Point
Designate the M register into which the set values are stored.

(2) Inputs into the Constant Table (M Register)
The set value are input after the definition of the M register constant table has been completed.

5P 100%
PSRN e LA{J AT . 1090
JOG LAU DECEL TIME LA DT
JOG LAU QUICK STOP TIME LAU QDT TR
JOG SLAL ACCEL TIME j 50
JOG SLAU DECEL TIME 10

J1416E+000 T 3T416E+000 | 31416E+000

6-5

6.4 Constant Table (# Register)

The# regisbei constant table is used for setting various constant data, such as tension control paramet
and position control parameters, that are used exclusively in a certain drawing.

6.4.1 Outline of the Constant Table (# Register)

As shown in Fig. 6.3, the # register constant table is prepared in the same manner as the # regis
constant table. A plurality of pages (up to 10 pages/fDWG) can be used for the # register constant ta

With the # register constant table, the settings of a plurality of pages are stored in the # registers of

designated drawing (DWQ). Also, the # register comments are prepared when the settings are stor
When the constant table is stored, # register comments are prepared or renewed automatically accordi
to the data name, symbol, unit, and register number of each row. These comments are used for comm
display in the program screens and for comment printout upon printout of documents.

+ L]7- - 0
Definition of Constant Table
|} + Designation of the data names, symbols, units,
setting ranges, and storage addresses.
—

i Input of various set values

Input of Set Values

v v

(Generated # Register Comments

Storage of Constants
into # Registers #W00000 ABCDEF ..
‘ #WO00001 AAAAAA ...
#W00002 BBBBEB ...

Generation of # register data and
© comments.

. Fig. 6.3 Preparation of the # Register Constant Table

6-6

6. TABLE FORMAT PROGRAMMING

.2 Preparing the Constant Table (# Register)

{1) Defining the Constant Table {# Register)
The following items are set in defining the # register constant table. A maximum of 100 constants
may be set per page.

@ Data Name

Designate the data name of the constant.
@ Symbol

Designate the symbol of the constant.
@ Unit

Designate the unit of the constant.
@ Lower Limit

Degsignate the lower input limit of the constant.
& Upper Limit

Designate the upper input limit of the constant.
® Save Point

Designate the # register into which the set values are stored.

(2) Inputs into the Constant Table (# Register)
The set values are input after the definition of the # register constant table has been completed.
When the input of the set values has been completed, the set values of the various definition data

are stored in the # registers of the designated drawings.

LO7 | Constant TBL(# REG} F-‘_ﬁi_)i}m\PlNiS‘_i CPS200SHACPU1 CP-92005H Diline Local

INE TOP SPEED MAX-SPD : 3000
SPEED HEF.100% VALUE ‘SP 100%

JOG LAU ACCEL TIME (LA AT . 300

i=|J0G LAU DECEL TIME AU DT

0G LAUQUICK STOP TIME {LAUGDT 300

-] JOG SLAU ACCEL TIME SLAU AT 10

06 SLAU DECEL TIME SLAU DT 1

3.1416E+000 31416E+000 ; 31416E+000

6-7

i
1

i

6.5 I/O Conversion Table

The 1/O conversion table enables the I/O conversion process of various processing programs to be prepar
as a table. Changes in J/O specifications can be made by simply changing definitions in the table.

6.5.1 Qutline of the VO Con_rersion frable

With the I/O conversion tables, tables for input conversion and tables for output conversions
respectively prepared using different DWG's for each processing program.

[

Ihput

Y

Definition of the Input Conversion Table| <. With the input conversion table, the input registers
' registers) are usually used for the inputs and the M registe
that are used by the processing program, for the output

v

Proce-ssing Progré_m

¥

Definiion of the Output Conversion Table| + With the output conversion table, the M registers, that al
used by the processing program, are used for the inputs ar
the output registers (O registers) are used for the output]

v

Output

Fig. 6.4 Preparétion of the /O Converéion Table

.5.2

6. TABLE FORMAT PROGRAMMING

Preparing the /O Conversion Table

Scale conversion of numerical data and various signal conversions of bit signals can be designated
with the I/O conversion table. Up to 1200 I/O conversions may be designated with one table (DWG).

(1) Scale Conversion Function
Addition, subtraction, multiplication, and division operations, that use immediate values and
arbitrary registers, can be used as scale conversion functions. The following items should be set.
Data Name
Designate the data name of the data to be converted.
@ Input
Designate the register number, the unit, and the symbol of the input data at each row.
® Scale Conversion
Designate addition, subtraction, multiplication, or division, that uses immediate values and
arbitrary registers, for scale conversion.
Setting Range
Designate the upper and lower limits for the output.
Output
Designate the number of the register into which the conversion result is to be stored and the
unit and the symbol of the output data at each row.

@ ®

[L0t } 10 Eonversion TEL POCDDENPIMLIST CPI206SHACR U CP-9288SH Offine Local

NIRY TENSION

TENZLLT w0 0 AP
i PO MEASURING[G00P/AEY] IPORFLG. ; 1 1410003330 /30000 - 2220

The I/O conversion designation of the 1st row of the above example realizes the same function as the
following program.

- I¥0100 x 10000 < 1024 => W¥01000

The /O conversion designation of the 3rd row of the above example realizes the same function as the
following program.

F I¥0102 < 00000
(F 00000 1 > 10000
[+ 10006 3 = WW01002

The I/O conversion designation of the 5th row of the above example realizes the same function as the
following program.

F 1¥0201 + MW05000 x MW03330 -+ MW01000 — MW02220 < 01000

[01000 3 > 30000
[F 30000] = W¥02002

6-9

6-10

t

{2) Bit Signal Conversion Table

The 9 types of bit mgnal conversion shown in Table 6.2 can be demgnated

Table 6.2 List of Conversion Symbols

. Name NO contact
NO contact - A()
NC contact B()
Pulsed NO contact PA()
Pulsed NC contact PB()
NO contact timer. TA (0C00.00)
NC contact timer TB (UL)
Designated time pulse for N O contact | PTA (00.[E)
Designated time pulse for NC contact | PTB (U00.[E]1)

NO contact chattering prevention

CTA (LC0.0M

The following items should be set.
@ Data Name

Designate the name of the 51gna1 to be converted.

Input

Designate the relay number and the symbol for the mput signal of each row.

Designate 9 types of bit signal conversion.

@
@ Bit Signal Conversion Set
@ Output

Designate the number and symbol of the relay into thh the conversion result is to be sto

for each row. .

Fi D Co o B PONQQ P P3200 3200
B S
i

LINE RUN PB

LINE EMERGENCY STOP S .

WD Na 1 COATER JOINT PETECT

W.P B Ho 2 COATER JOINT DEFECT,

ENTRY COIL CAR SKD1 COIL CETECT
BT CoiL CAR SKDT EDIL CETEET

dNo.) PR EXIT STRIF DEYECT

6. TABLE FQRMAT PROGRAMMING

Equivalent Ladder Programs
The bit signal conversion designation of the 1st row of the above example realizes the
same function as the following program.

1804001 : : - KB040001
(28]

The bit signal conversion designation of the 2nd row of the above example realizes the
same function as the following program.

1B04002 WB040002
[[L 0 % e q

The bit signal conversion designation of the 3rd row of the above example realizes the
same function as the following program,

1B04003 0o
[1B B ¥B040003]

AQ

The bit signal conversion designation of the 4th row of the above example realizes the
same function as the following program. _ }
[IBp4004 EBOIIID ¥B040004
o
I [4] o S
\ J
The bit signal conversion designation of the 5th row of the above example realizes the
same function as the following program.

)
1B04005 01.00 EwOTOT ¥B040005
l—? I——['u — ' O-—1TAQ1.00)

The bit signal conversion designation of the 6th row of the above example realizes the
same function as the following program.

I1B0400S 1. 00 EW'E[DD]1 ¥B040006
[oppe 90] O——{TB(L00)
J

The bit signal conversion designation of the 7th row of the above example realizes the
same funetion as the following program.

-

7

oy

184007 EBT ¥B040007

1 L A(l'w)
MBO40007 | 001.00 EWIIOM EBQ—r’rD]]D]]

P 3] C !

The bit signal conversion designation of the 8th row of the above example realizes the
same function as the following program.

1B)4008 EBOIID ¥B40008 B
¥l L4| "
¥BO40008 [00100 EWDOOOD, EB
LR 8 : 3

J
The bit signal conversion designation of the 9th row of the above example realizes the
same function as the following program.

[1804009 001.00 B EBUIIID B
B LR b —O—{CTA(LO)
IBJ4009 00100 EWCIIID BB NB040009
it r t A O—
KBp40009
L ' J

{Note) : The E registers are registers used by the controller. It is impossible for a user to

directly read or write.

6-11

6.6

6.6.1

6-12

Interlock Table

The interlock ta;hle is used to prepare various interlocks, for starting conditions, running conditi
ete. of devices, in table format. .

Outline of the Interlock Table

As shown in Fig. 6.5, the interlock table is composed of one main interlock table and the correspon
sub interlock tables. One sub interlock table may be set for one row of the main interlock table. The
interlock table is used to prepare specific input signals for the main interlock table. The main interl
table may be divided into several blocks. The maximum number of blocks is 26 and each bloc
handled as an independent interlock. When the interlock table is stored, comments for the regist|
(relays) are prepared or renewed automatically according to the data name, symbol, and register num
(relay number) of each row. These comments are used for comment display in the program screens
for comment printout upon printout of documents.

Main Interlock Table . - Qub Interlock Table

Sub Interlock Table

[Sy

Fig. 6.5 Preparation of ih;a Interlock Table

6. TABLE FORMAT PROGRAMMING
Preparing the Interfock Table

Each interlock table (main or sub interlock table) is prepared in the same manner as follows. A
maximum of 500 rows and 25 columns of data can be set.
@ Classification of the VO signal: This is designated according te the mode (M), The following 4
modes can be used.

- 1 : Designates a signal to be an input signal.

- 8 : Designates an output signal from a sub interlock table to be used as an input signal.

- 0 : Designates a signal to be an output signal.

- X : Designates the contact of an output signal to be used as an input (self-hold circuit).
Data Name

Designate the name of the interlock condition to be input for each row.

Symbol

Designate the symbol of the interlock condition te be input for each row.

Register

Designate the register number of the interlock condition to be input for each row.

Interlock Input Condition

For each input signal, designate the interlock condition, which is to be used as the condition for
obtaining the logic product (AND) for each column. The NO contact condition ([O]) and the NC
contact condition ([X]) ean be used as interlock conditions.
® Interlock Input Condition

For each output signal, designate ([®]) the above mentioned interlock conditions to be used as
conditions for obtaining the logic sum (OR) for the corresponding row.

@ ® 8 e

The logical product (AND) of the input symbols, which were designated as the interlock conditions,
is determined for each column and the output signal is prepared as the logic sum (OR) condition of
the logical product results of the columns designated at each output signal row. Thus the following
interlock table will be equivalent to the ladder program shown in the next page.

f eilo DGO0TAP 9200 P P-32005H O e Loca

e T T

: : : g 2 TRTETE R T ETAi

i IM2R0LL s use M2USE * |MBO10000 QER

I IM4ROLLiswse MAUSE IMBOTROO &= O i
AT S IM1ROLL INV READY Mi-PREP |MBOI00TD {eliels] jv&

S M2 ROLL INV READY M2PREP IMBOM00HT [C3:EY ! : e
WADE] S M3 ACLL INV READY ‘M3PREP [MB010012 {3 [iK3 KO i

1S {M4 ROLL NV READY MAPREF MBOIDOT3 (Y. |3 i

§ IM5ROLL INV READY MEPREP [MBOIOGTY NI

0 iLINE RUNNING CONDITIONS RUNINTL [MBOTOGTF - MO | 01| M

i

6-13

6.7

6.7.1

6-14

Equivalent Ladder Program

M2-USE W-USE NI-PREP M2-PREP W3-FREP Wi-PRIP N5-PREP RUNINIL
¥B010000 MBO10001 NBO10010 EB010911 UE010012 MBOL0013 ~ MBD10C14 MBOIOOIF
— ——— —— ——— —— —— —— 0~
M2-SE M-ISE H1-PREP A2-PREP M3-PREP M5-PREP.
¥BO100G0 NBO10OO1 EB010010 48010011 iB010012 IB(IIOGM
| ———— —— ————1
W2-USE M-ISE N1-PREP U3-PREP M4-PREP N5-PREP
iB010000 BOI0OD]1 EBO10010 ¥B010012 1B016013 ¥BO10014
—— —— —— —— ——|
B-USE U-ISE H1-PREP W3-PREP W5-PREP
501000 iBQ10001 WBO10010 IB010012 ¥B010014
————— ——— —|
¥1-PR 2-PR - I3-PR ¥4-FR 5-PIR ' POVER
!%0!1001 IBOIOGZ . lBDllM3 1801004 1601005 a : ll010020|
[i1 11
ik I I " I i A

_ Part Composition Table

The part composmon table is used to mmultaneously prepare a plurahty of circuits of a fixed patte
such as solenmd circuits, accessory sequence circuits, etc.

Outline of the Part Composmon Table

The part composmon table is composed of functions, that are used as parts, and the part compositi
table. The functlons to be used as parts should be prepared before using them in the part compositi

table.

Parts Database

Function : ABCDEFG

- Each part is composed of the main body of the functi

J

Program

Definition -

Function VO

- program and the function I/O definition.

Part Composition Table

- A plurality of circuits, which use the designated parts, a
prepared simultaneously.

Each circuit 1s prepared by defining the inputs and outpu

of the circuit with the register numbers.

Fig 6.6 Préparation of the Part Composition Table

7.2

6. TABLE FORMAT PROGRAMMING

Preparing the Part Composition Table

With the part composition table, a plurality of circuits with the same pattern can be prepared
simultaneously using designated parts. In the part composition table, one row corresponds to one
circuit and names, inputs, and outputs are designated for each row to prepare a plurality of circuits.
The parts to be used can be designated for each row. The maximum number of inputs and the maximum
number of outputs is designated by the user. A maximum of 100 circuits can be prepared.
@ Data Name

Designate the name of each circuit.

@ Part Name
Designate the function symbol or user function name of the function to be used as a part.
@ Input

Use register numbers to designate the inputs of each circuit. The register whose number is
designated here will provide the input to the user function.

@ Output
Use register numbers to designate the outputs of each circuit.
® Head Work

Designate the number, in word form, of the D register or # register which is to be the head work
register to be used for each circuit. :

¥ HabE s HEChER
1803008 (1803009 |MW000
BO30I0 (18030171 i IBO3018 IBD301S IMWOIEH
1BO3020 1180302 23 11803028 :1BO302S MwOI002 'L
UB0A030 IBODH IB03033 }IB03038 |iB03039 [MwW01003 |
\|B03M40 1B03043 11B0304B_|iB03043_MwOI004

6-15

6.7.3

6-16

Preparing the Function Program for Parts

The parts (main bodies of function programs and function I/Q definitions) to be used in a part composit
table should be prepared in advance. Although the preparation method is the same as that for ordin
function programs, the following data are used for the input/output of parts and the work register.
Input of Parts ' , ‘ . '
The inputs designated at the function I/O definition will be used as the inputs for the parts. Refe
"Chapter 3 REGISTER MANAGEMENT METHOD" concerning the relationship between the in
definition for a function and the input variables (X registers) used in the function.
Output of Paris : ' ' :
The outputs designated at the function /O definition will be used as the outputs for the parts. Re
to "Chapter 3 REGISTER MANAGEMENT METHOD" concerning the relationship between
output definition for a function and the éutput variables (Y registers) used in the function.

Work Register :
The Z register corresponds to the D register of a DWG and the # register corresponds to th
register of a drawing and the sum of the head work register number of the part composition ta
and the relative register number of that register is used as the number of the actual work regist

8.1

Constant Table (C Register)

Qutline of the Constant Table (C Register)

6. TABLE FORMAT PROGRAMMING

The C register constant table is used for setting various data constants common to all DWG such as
equipment and manufactured sources. A maximum of 200 constant tables (C register) can be created.

Multiple definitions of set values are stored in the C register by the constant table (C register).

Alsop, the C register comments are prepared at the same time the set values are stored.

When the constant table is stored, C register comments are prepared or renewed automatically according
to the data name, symbol, unit, and register number of each row. These comments are used for comment

display in the program screens and for comment printout upon printout of documents.

LN
~ 1

Constant Table (C register) Map -

Definition of Constant Table

—

I

Imput of Settings

v

v

Storage of Constants
into C Registers

Generated C Register Comments

CW00000 ARCDEF ...
CWO00001 AAAAAA ..
CW00002 BBBBBB ...

Designation of the data names,
symbols, units, setting ranges,
and storage addresses.

Input of various set values

Generation of C register data
and comments.

Fig. 6.7 Preparation of the C Register Constant Table

6-17

6.82 Preparing the Constant Table (C Register)

(1) Defining the Constant Table (C Register)
The following items should be set in defining the C reglster constant table. A maximum of 1638
constants may be set per page.
(® Data Name
Designate the data name of the constant.
@ Symbol
Designate the symbol of the constant.
@ Unit
Designate the unit of the constant.
@ Lower Limit
DeSIgnate the lower mput limit of the constant.
® Upper Limit -
Designate the upper 1nput limit of the constant.
® Save Point ‘ '
Deslgnate the C register into which the set values are to be stored.

(2) Inputs into the Constant Tabie (C Reglster) ’
The set values should be mput after the definition of the C register constant table has bee

completed,
onsta able [Reagiste PO0 2 P9200 P P-92005H Gffline Leoca
Va!ue of Pgain 1 amE!mcaton - -{P1-100 o100 lemp - 100~ 100 - iCw0oe00
P gain during stall- . L - iStallP : 30 : amn. -1 2000 CwW00Dm | fe
2| P gain during romnal operation Normal P - BDw " lamp, -4 . 2000 ow000e2. |
Lall time during gain modification PLAY’ 10 is” 1T Lo cloo - ow00003
Deviation mput value dead zone - iDeadzon ;- 0 i 1] 500 . - CW D004
Ressived ~ e v Reserved 8= 8. 8 : 10WOa005 |
Inlegration 6me . int time. 50 ims: N 1060 - - iCwODDE -
Upper integration output limit It UL ‘000 - 0: 100 iCw00007
Lower integration cutput fimit fnt LL * 1000 -32767 32767 Cwo0ans o
Integration output propartional cosificient - ..Popl g - 6. | 0 ___+wooons
integration output figed coefficiant . ; FixadC 10000 a {18000 - CwOOO1G
: Uppe! Pl output imit PIUL i 1000- :- 6. "1 .10000 Ewodo11 -
40 Lowes Pl outped imit FILL 2000 - 32767 1 22767 ICWO0Di2
ALY oulpast reset tims : ’ {AST time 0 i3 0- i 1] Cwi0o013
15 100% power value . 1 100% pw 100 - W ;o Cwo0014
Stall power propartion ” (Stall 50 0 100 - {CW/0D015
' Pawer command LAU time i pw LAL 5 1 L 10. Cwioon16

6-18

7. STANDARD SYSTEM FUNCTIONS

7 STANDARD SYSTEM
FUNCTIONS

The functions that are provided as standard system
functions and their 1/Q parameters are described in this

chapter.

7-1

7.1

Data Trace Read Function (DTRC-RD)

Name of Function DTRC-RD)
Reads out the trace data of the main controller unit and stores this data in the user registers.
Function The data in the trace memory can be read out upon designating the record number and the
number of records. The readout can be performed by designating just the necessary items in
the record.
TIRC-FD
————— EXECUTE COMPLETE——
==zzz==) | GRGUP-NO ERROR —
Function -} : ... N0 OTATHG | ess=mss
Definition | - ’ REC No STATES | ===s=e ’
==zzzz2} | REC-SIZE REC-SIZE|===z===)
===z===3 |SELECT REC-LEN |scs===a>
DAT-ADR
VO Definition |No. Name - To Description
Designation*
1-|EXECUTE |B-VAL Designation of the execution of data trace read
2 . |GROUP-NO |I-REG Designation of the data trace group No. (1 to 4)
3 /|REC-NO I-REG Designation of the head record No. for readout
(0 to maximum record number -1)
4 |REC-SIZE [I.REG Designation of the number of records requested for readout
Input : (1 to maximum record number)
) 5 |SELECT |I.REG Item to be read out (C001H to FFFFH)
Bits O to F correspond to data designations 1 to 16 of the
trace definition. ' :
6 |DAT-ADR- |Address input| Designation of the No. of the head register for readout
. ‘- (address of MW or DW)
1 - |COMPLETE | B-VAL Completion of trace read
2 |ERROR B-VAL Occurrence of error '
Output 3 .|STATUS I-REG Data trace read execution status
4 |REC-SIZE - |I.REG . Number of records read -
5 |REC-LEN |I-REG Length (in words) of 1 record that is read

* : Indicates the /O designation at the CP-717.

Configuration of the Data Trace Read Execution Status (STATUS)

Name Bit No. Remarks

System reserved bit0 to bit7

No trace definition bit8 The function will not be executed.
Group No. error bit9 The function will not be executed.

{ Designated record No. error bit1Q

Error in the designated bitll The function will not be executed.
number of records read :

Data storage error bit12 The function will not be executed.
System reserved bit13 and bit14 i

Address input error bitlh The function will not be executed.

1.1 Readout of Data

Record No. 0

No. of the head
record to be read n

Data Trace Memory

o

Oud Number of

records read
New

—_

Readout

7. STANDARD SYSTEM FUNCTIONS

T

User Register

A 4

- Head address of register
into which data is read

The most recent record Nos. of trace groups are each stored in SW00100 to SW00103 as shown in Table
7.1. To read the most recent trace data, designate the most recent record No. as the record No. to be

read.

Table 7.1 Newest Record Number

System register number Data trace definition
SW00100 For group 1
SW00101 For group 2
SW00102 For group 3
SW00103 For group 4
SW00104
SW00105 —
SW00106 —

SW00107

7-3

712 Configuration of the Read Data

(1) Data Configuration . f

DAT-ADR — 1to32words | Record1 ITEM1 old

ITEM16

1to 32 words Record 2

Trace data :
' Max. 32512 words

—

1to 32 words | Recordn New

(2} Record Length
A record is composed of the data for the selected items. .

Word length of 1 record = Bn X 1 word + Wn X 1 word + Ln X 2 words + Fn X 2 words

Bn: Number of bit type register selected points

Wn: Number of word type register selected points . A maximum of 1
Ln: Number of double-length integer type register selected points { points in total.
Frn: Number of real number type register selected points

Maximum record length = 32 words (e.g. when there are 16 double-length integer type
. . real number type registers) }
Minimum record length = 1 word (e.g. when there is one bit-type or integer type register

(3) Number of Records .-
t LI
Maximum number of records 32512/record length
Number of records when the record Oto 1016
length is the maximum ‘
Number of records when the record 0 to 32512
length is the minimum :

7-4

2

7. STANDARD SYSTEM FUNCTIONS

Trace Function (TRACE)
Name of Function{ TRACE
Performs execution control of the tracing of the trace data designated by the trace
group No. The trace is defined at "Data Trace Definition" screen (refer to the Control
Pack CP-717 Operation Manual (SIE-C877-17.4, -17.5) for details).
- Tracing is executed when the trace execution command (EXECUTE) is set to ON.
Funection - The trace counter is reset when the trace reset command (RESET) is set to ON.
The trace end (TRC-END) output is also reset at this time.
- The trace end (TRC-END) output is set to ON when the trace execution count
becomes equal to the set count (set at Trace Definition).
TRACE
~—| EXECUTE TRC-END }———
Function
Definition ——— RESET ERROR [——
=zzz====) | GROGP-NO STATUS |z==z====)
/O Definition |No| Name DeSigI;‘gtion* Description
1 |EXECUTE [B-VAL Trace execution command
Input 2 |RESET B-VAL Trace reset command
3 { GROUP-NO| I-REG Designation of the trace group No. (1 to 4)
1 |TRC-END | B-VAL End of trace
Output 2 | ERROR B-VAL Occurrence of error
3 | STATUS I-REG Trace execution status

¢ : Indicates the I/O designation at the CP-717.

Configuration of the Trace Execution Status (STATUS)

Name Bit No. Remarks

This becomes ON after one round of reading of the contents

Trace data full bit0 in the data trace memory of the designated group has been
completed.

System reserved bitl to bit7 .

No trace definition bit8 The function will not be executed.

Designated group No. error bit9 The function will not be executed.

System reserved bit10 to bitl2

Execution timing error bit13 The function will not be executed.

System reserved bitl4

System reserved bitl5

7-5

7.3

7-6

Failure Trace Read Function (FTRC-RD)

Name of Function

FTRC-RD

Reads the failure trace data and stores them in the user register. The data in the trac
buffer can be read out upon designating the number of records needed. Either th

Function failure occurrence data or the restoration data are desugnated for readout. Enables th
reset (initialization) of the failure trace buffer.
FTRC-RD ,
EXECUTE OONPLETE——
RESET ERROR +———
Function .
Definition sese===d | TYPE L
s=====z) [REC-SIZE REC-SIZE|===222=)
REé—-Im s=====:z)
‘ DAT-ADR
.. /0 ..
I/0 Definition |[No.| Name Designation* _ Description
1 |EXECUTE B-VAL | Failure trace readout command
2" | RESET B-VAL - |Failure trace buffer reset command
3 |TYPE I-REG |Type of data read
Input ' 1 : Occurrence data
2 : Restoration data -
4 |REC-SIZE I-REG |Number of read records
) Occurrence data: 1 to 64 Restoration data: 450
5 |[DAT-ADR | Address input | Head register address for reading (address of MW or DW]
1. |COMPLETE| B-VAL |[Completion of failure trace read
2 |ERROR B-VAIL: |Occurrence of error : J‘
Output 3 |STATUS I-REG__ | Failure trace read execution status ‘
4. |REC-SIZE | - I.REG__ | Number of read records
5 |REC-LEN I-REG |Length of read record

* . Indicates the o designation at the CP-717.

Failure Trace Read Execution Status (STATUS)

Bit No.

Name Remarks
System reserved bitQ to bit7
No trace definition bit8 The function will not be executed.
Designated group No. error bit9 The function will not'be executed.
System reserved bitl0 :
Error in the designated bit1l The function will not be executed.
number of records .
Data storage error bitl2 The function will not be executed.”
System reserved bitl3
System reserved bit14 :
Address input error bit15 The function will not be executed.

7. STANDARD SYSTEM FUNCTIONS
3.1 Data Readout (Failure Occurrence Data)

Failure Occurrence

Trace Memory
. User register
0ld - < Head address of
Number of the register into
read records Readout which data is
Most recent — |New - read
record >

The readout will always be started from the most recent record.
2 Readout Data Configuration (Failure Occurrence Data)

{1) Data Configuration

DAT-ADR — 5wordsy] Record 1 Time of occurrence - old
5 words Record 2

Trace data Max. 320 words

5 words| Record n l Time of occurrence - new

(2) Record Configuration

2 words }Register Designation No.

1 word {Year aud month of occurrence 1 record (5 WO].'dS)
1 word | Day and hour of osctirrence
1 word | Minutes and semndsofocmrremgi

(3) Structure of Register Designation No. (2 words)

Contains the failure detection relay information.

F 87 0 (Example) MB020001 (hexadecimal expression)
1 word @ | @ - 01 | 83
1 word Data address 07D0
Bit Configuration of © Bit Configuration of @
7 | Defined flag (1 = defined, 0 = undefined) . System reserved (= 0)
6 | System reserved (= 0) Data type
5 Bit = 0, Integer =1,
4 | 0=NO contact designation, 1 = NC contact designation | Double-length integer = 2, Real Number = 3
3 | Type of variable
2 5=0, I=1 Bit address O to F
1 0=2, M=3
0
{4) Number of Records

Minimum number of records 0 ¢— 0 = no failure occurrence data
Maximum number of records 64

7-7

733

Data Readout (Failure Restorati

on Data)

Failure Restoration Trace Memory

. Old
Record No.

of read record n|Ne

Number of
read records

User register

v

Readout

Old;

New

Y

“= Head address of
the register into
which data is re

The number (amount) of restoration data is stored in SW00093 (ring counter for 1 to 9999).

Time of restoration - old

7.34 Readout Data Configuration (Failure Restoration Data})
(1) Data Configuration
DAT—ADR -+ 8 words Record 1
8 words] = Record 2
Trace data
8 words Record n
(2) Record Configuration

2 words| Register Designation No.

1 word
1 word
1 word
1 word
1 word
1 word

(3) Number of Records

Year and month of occurrence

Day and hour of sesurrence

Minutes and seconds of cccurrency

Year and month of restoration

Day and hour of restoration

Minutes and seconds of resbnmting

1 record (8 words)

Minimum number of records

l Time of restoration - new

0 & 0 = no failure restoration da

Maximum number of records

450

-8

4

7. STANDARD SYSTEM FUNCTIONS

Inverter Trace Read Function (ITRC-RD)

Name of Function

ITRC-RD

Reads out the trace data of the inverter and stores this data in the user registers.
The data in the trace buffer can be read out upon designating the number of records

Function needed. The readout can be performed upon designating just the necessary items in
the record.
[Applicable inverters]
Inverters connected via CP-213, CP-215, or CP-216
ITRC-ED
———{ EXBCUTE BOSY |
— 1 ABORT COMPLETE}————
====zzz=} | PEV-TYP ERROR
Function
Definition ====222> | CIR-NO STATUS |=e=====
2=zz22=3 |ST-NO REC-S1ZE|===22=2>
==z=z===> | CH-NO REC-LEN [=z======)
=z=z===) | REC-SIZE
====z==} | SELECT
DAT-ADR
I/O Definition [No.] Name Des; vo * Description
esighation
1 | EXECUTE B-VAL | Inverter trace read command
2 |ABORT B-VAI, | Inverter trace read forced interruption command
3 | DEV.-TYP L.REG | Type of transmission device
CP.213=2
CP-215=1
CP-216=4
4 | CIR-NO I-.REG | Line No.
CP-213:1t08
CP-215:1t0 8
CP-213:1t0 8
Input 5 | ST-NO I-REG | Slave station No.
CP-213: 1to 31
CP-215: 1 to 64
CP-216: 1 to 30
6 | CH-NO I-REG | Transmission buffer channel No. (No designation)
7 | REC-SIZE T.REG | Number of records to be read (1 to 64)
8 |SELECT I-REG | Items to be read (0001 toc FFFFH)
Bits 0 to F correspond to trace data items 1 to 16.
9 | DAT-ADR |Address input| Head address of data buffer register
{address of MW or DW)
1 | BUSY B-VAL | The reading of inverter trace data 1s in progress.
2 | COMPLETE| B-VAL | Completion of inverter trace read
3 | ERROR B-VAL | Occurrence of error
Output 4 {STATUS I-REG Inverter trace read execution status
5 |REC-SIZE I-REG | Number of read records
6 { REC-LEN I-REG Length of read record (for 1 record)

* : Indicates the I/O designations at the CP-717.

7-9

Configuration of the Inverter Trace Read Execution Status (STATUS) |

Name Bit No. Remarks
System reserved : bit0 to bit8 .
Transmission parameter error bit 9 The function is not executed.
System reserved . . : bitlQ .-
Error in the designated bitll The function is not executed.
nummber of records K , . :
Data storage error ° - bitl2 The function is not executed.
Transmission error - - bitl3 The function is not executed.
System reserved : bitl4 -
Address input error | : bitls The function is not executed.

7.4.1 Readout of inverter Trace Data

Inverter Trace Memory
‘ . User register
0ld ‘ - “— Head address of th
Number of . register into which
Most recent — |New| read records | 1240 data is read

record

The readout will always be started from the most recent record.

7.4.2 Readout Data Configuration

(1) Data Configuration ,
DAT-ADR — 1to 16 words|Record 1 ITEM1] Told
ITEM16
1 to 16 words|Record 2 -
i ‘ Trace data (1920 words max.)
; 1 to 16 words|Record n : ‘,New

{2) Record Length
A record is composed of the data of the selected items.
Word length of 1 record =1 to 16 words

3

{3) Number of Records

$

Maximum number of records = 120

7-10)

.5

Inverter Constant Write Function (ICNS-WR)

7. STANDARD SYSTEM FUNCTIONS

Name of Function

ICNS-WR

Writes the inverter constants.

Function The types and ranges of the inverter constants to be written can be designated.
[Applicable inverters]
Inverters connected via CP-215, or CP-216
ICNS-TR
——— EXBCOTE BUSY |——
~————{ ABORT COMPLETE———
===zzxzz) | DEV-TYP ERROR S
====z==) |CIR-NO STATS ==az==c)
Fuanction | g
Definition | T |F%0
s==zz=2) (CH-NO
=azzzz=) [(NS-TYP
z=====z) | (NS-ND
====2==x) | (NS-SIZE
DAT-ADR
/O Definition |No Name Vo D ipti
. Designation® escription
' 1 [(EXECUTE | B-VAL | Inverter constant write command
2 |ABORT B-VAL | Inverter constant write forced interruption command
3 |DEV-TYP I-REG | Type of transmission device
CP-215=1
CP-216=4
4 |CIR-NO I-REG | Line No.
CP-215:1to 8
CP-216: 1108
5 IST-NO I-REG | Slave station No.
Inout CP-215: 1 to 64
npu CP-216: 1 to 30
6 [CH-NO I.-REG | Transmission buffer channel No. (No designation)
7 |CNS-TYP I-REG | Type of inverter constant
0 = direct designation of reference No., 1 = An, 2=Bn,
3=Cn,4=Dn,5=En,6=Fn, 7=Hn, 8=Ln, $=0n, 10~=Tn
8 |CNS-NO I-REG inverter constant No. (1 to 99)
The upper limit will differ according to the type of inverter.
If CNS-TYP = 0, designate the reference No.
9 |CNS-SIZE I-REG Number of inverter constants
(number of data to be written) 1 to 100
10 [DAT-ADR |Address input} Register address of set data (address of MW, DW, or #W)
1 [BUSY B-VAL | Inverter constants are being written in.
Output 2 _|COMPLETE B-VAL | The write-in of inverter constants has been completed.
utpu 3 |ERROR B-VAL | Occurrence of error
4 |STATUS I-REG Inverter constant write execution status

*: Indicates the I/O designations at the CP-717.

7-11

Configuration of inverter Constant Write Execution Status (STATUSU

Name Bit No: : Remarks

System reserved bitQ to bit7 .

Execution sequence error - bit 8. The function is not executed.
Transmission parameter error bit 9 The function is not executed.
Designated type error "bit10 - | The function is not executed.
Designated No. error bitll The function is not executed.
Error in number (amount} of the biti2 The function is not executed.
designated data :

Transmission error . bit13 The function is not executed.
Inverter response error _ bit14 The function is not executed.
Address input error - bitl5s The function is not executed.

(Note) : In the case of an inverter response error, the error codes from the inverter are indicated in
bit0 to bit7.
01H(1) :: function code error
02H(2) ': reference No. error
03H(3) : write-in count error _
21H(33) : write-in data upperflower limit error
22H(34) : write-in error (during running, during UV)
Numbers in{)areof demmal expressions.

7.5.1 Configuration of the Write-in Data

CNS-TYP
) Inverter Constants
n-01 | Acceleration time 1

User register)) .
DAT-ADR — Constant datal | ——-> w05 | ASR proportional gain| < CNS-NO
I _ Constant data 2 ——> bto—06 | ASR integration time

Constant data 10 ' | ———> pp-14 PG dividing ratio

n-25 [AO optional output gain

7-12

7. STANDARD SYSTEM FUNCTIONS
Method of Writing to an EEPROM

Procedures for writing constants to an EEPROM (inverter internal constant
storage memory) are shown in Fig. 7.1.

|

Writing of a inverter constant
to work memory

i

WRITE ENTER command

!

Fig. 7.1 EEPROM Write Procedures

Constants written with the system function "ICNS-WR" are once entered in
work memory. In order to actually store these in EEPROM, it is necessary to
bring up the WRITE ENTER command as shown in Fig. 7.2.

Inverter -
"TCNS-WR" function

}eﬂ Work memory é—g !
Shared

! memory

. EEPROM l
Dagital ——_
operator WRITE ENTER command

Fig. 7.2 WRITE ENTER Command

{1} WRITE ENTER Command
Using the “ICNS-WR” function, by writing the data “0” in the reference number “FFFD,” the WRITE
ENTER command is entered for the inverter.

7-13

(2) Program Example T
An example of a program that writes “200” in the constant “C1 017 is shown in Fig. 7.3 (©, @

@ First, write to the mverter work memory.

DBO(I}(IIOOO DBOUPUOI DB0O0002 DB000003 DB000004 l
11 . % - O 1
(Command held) :
DBO??O(M (System Function)
1. ICNS-WR
g)%cb?&ﬁd) : (In execution)
. ’ . D
I - EXECUTE . BUSY 300%906
(Foched interruption) |- -- : + - - (Completion)
DBO0000S ' DB00002
i} ABORT COMPLETE o oy
. 2 (Exron)
(Transmission device type) - DB000003
F 00004 =======>|DEV-TYP . ERROR - O—
i) . rte: tant write
. (Line No.). : - gﬁe‘:ltioll'i?;ius) i
I— 00002 ===z===z>{CIR-NO STATUS zzz==========} DWQ({02
(Slave station No.} - ' '
- 00001 =======>|ST-NO
(Inverter constant type)
F- 00000 =======>CNS-TYP
(Inverter constant No.) ‘
F 00512 =======>|CNS-NO
(200H}
(No. of inverter constants)
F 00001 =======>|CNS-SIZE
, (Parameter address)
DIXOI&%GI
! . =200
DBOOO00 u =20
; :
IFON (When end normally) .
(Command reset)
SB099004 , : DBODQQOO |
= ‘ 9, i
(Normal operation status) ‘ (Status held)
F 00000 - - = D¥00003
IEND '
DBG00003
—
IFON (When ended with error)
(Error status) . (Status held)
- DW¥00002 = D¥00003
(Command reset)
| 83099004 DB000000 1 _
I 14 , O
IEND
DEND

*:'By turning DB0O0000 = ON, a one time only write can be executed.

7-14 :

7. STANDARD SYSTEM FUNCTIONS
@ Actually writing to EEPROM. (Enter the WRITE ENTER command.)

DBO{IB(I)OOO DBOOr0001 DBO?})OO? DB(190003 DB000004 l
(Command held) ' W e
DBOOPO(M .
i {System Function)
ICNS-WR
;%‘B“olg-{‘]?;d) (In execution)
| } - EXECUTE BUSY DBDO?COLO 6
(Ftiu)ré:gg ?(ﬁgnuptlon) (Completion)
DB000002
—] ?—— ABORT COMPLETE C;QO
- : (Error)
(Transmission device type) DB000003
F 00004 =======>|DEV-TYP ERROR —(]
. (Inverter constant write
(Line No.) ;
F 00002 =======>|CIR-NO STATUS | S22 huonong
(Slave station No.)
F 00001 =======>|ST-NO
(Inverter constant type)
]— 00000 =======>|CNS-TYP
(Inverter constant No.)
I— 00003 =======3|CNS-NO
(No. of inverter constants)
F 00001 =======>CNS-SIZE
{(Parameter address)
PARAM
DAQ0001(=0)
DBGOOG02
l_

IFON (When end normally)

{Command reset)

83099004 DB000000 |
—Vi O—
{Normal operation status) (Status held)
- 00000 = D¥00003
1END
DB000003
—
IFON (When ended with error)
{Error status) (Status held)
- D¥00002 = D¥00003
C d
| sBogg0O4 “Baco0000 |
I Vi
IEND
DEND

*; By turning DBO000O = ON, a one time only write can be executed.
Fig. 7.3 Program Example

NOTE .
- The WRITE ENTER command writes all constants that have been written to work

memory up to that point to the EEPROM.
- If power to the inverter is turned OFF, work memory data is lost, but data written to the

EEPROM is saved.
7-15

7.6

7-16

Inverter Constant Read Function (ICNS-RD)
Name of Function| . ' ICNS-RD
Functi Reads the inverter constants.
1on The types and ranges of the inverter constants to be read can be designated.
{Applicable inverters]
Inverters connected via CP-213, CP-215, or CP-216.
‘ ' o6
—— EXECUIE BUSY [e
~——— ABORT COMPLETE ———
=======} |PEY-TYP m —
Function ===z==23{CIR-NO STATUS [+==2ss=>
Definition N P i
i
i,
i
I/O Definition |No.| N vo " Description
: ame |Degipnation?] esCripil
1 |EXECUTE B-VAL | Inverter constant read execution command
2 . |ABORT B-VAL Inverter constant read forced interruption command
3 |DEV-TYP I-REG | Type of transmission device
) CP-215=1
) ; CP-216=4
4 |[CIR-NO .I-REG | Line No.
: CP-215:1to 8
: CP-216:1to 8 -
5 '|ST-NO 'I-REG | Slave station No.
' CP-215:1to 64
Input CP-216: 1 to 30
6 .|CH-NO I-REG | Transmission buffer channel No. (No designation)
7 . |CNS-TYP 'I-REG | Type of inverter constant .
0 = direct designation of reference No. 1= An, 2=Bn,
3=Cn,4=Dn,5=En,6=Fn,7=Hn,8=1n,9=0n,10=Tn
8 [CNS-NO I-REG ' | Inverter constant No. (1 to 99)
‘ The upper limit will differ according to the type of inverter.
If CNS-TYP = 0, designate the reference No.
9 |CN&-5IZE IL.LREG Number of inverter constants
‘ ' (number of data to be read) 1 to 125
10.[DAT-ADR |Address input; Register address of the data to be read (address of MW
or DW) :
1 ' |BUSY B-VAL | Inverter constants are being read.
0 2 |COMPLETE B-VAL The reading of inverter constants has been completed.
utput 3 |ERROR B-VAL | Occurrence of error
4 |STATUS, I-REG | Inverter constant read execution status

- * . Indicates the /O designations at the CP-717.

7. STANDARD SYSTEM FUNCTIONS

Configuration of Inverter Constant Read Execution Status (STATUS) I

Name Bit No. Remarks

System reserved bit0 to bit7 A

Execution sequence error bit 8 The function 1s not executed.
Transmission parameter error bit 9 The function is not executed.
Designated type error bitld The funetion is not executed.
Designated No. error bit1l The function is not executed.
Error in number (amount) of the| biti2 The function is not executed.
designated data

Transmission error bit13 The function is not executed.
Inverter response error bitid The function is not executed.
Address input error bitl5 The function is not executed.

(Note) : In the case of an inverter response error, the error codes from the inverter are indicated in

bitD to bit7.

01H(1) : function code error

02H(2) : reference No. error

03H(3) : Readout count error

Numbers in () are of decimal expressions.

Configuration of the Data Readout |

User register

CNS—TYP

'
bo—-01

—> 05

—> 06

DAT-ADR — Constant data 1
Constant data 2
CNS-SIZE :

Constant data 10

_— -4

Inverter Constants

Acceleration time 1

ASR proportional gain

ASR integration time

-

PG dividing ratio

AQ optional cutput gain

« CNS-NO

T-17

t

CP-213 Initial Data Setting Function (ISET-213)

7.7
Name of Function . ISET-213
Functi Sets the initial data for the inverter connected to the CP-213 line. A few scans are
unction L. . . .
required until the completion of the process.
o " ISET-213
« ~—— BXECUTE BUSY ——
=zz=z==) | CIR-NO COMPLETE——
Function -
Definition zz=====) | STATION . S-ERROR — R
=z=za==) | JORD-CNT P_Em e
DAT-ABR
L/O Definition |No o Descripti
) Name IDesignation™* . escription
1 | EXECUTE | B-VAL [CP-213 initial data setting command
Input 2 | CIR-NO I-REG CP-213 line No. (1 to 8)
pu 3 | STATION I'REG | Slave station No. (1 to 31)
4 | WORD-CNT | I-REG Number of words of set data (1 to 127)
5 | DAT-ADR |Address input| Head address of set data (MW, DW, #W)
1 { BUSY B-VAL | CP-213 initial data setting in process
0 : 9 | COMPLETE | B-VAL | Completion of CP-213 initial data setting
utpu 3 | SERROR .| B-VAL | Occurrence of error -
4 | P-ERROR B-VAL Parameter error

7-18

* : Indicates th(:a 1/0 designation at the CP-717.

7. STANDARD SYSTEM FUNCTIONS
.8 Send Message Function (MSG-SND)

Name of Function| ‘ MSG-SND .
Sends a message to the called station which is on the line and which is designated by
the transmission device type. Supports a plurality of protocol types.
Funection The execution command (EXECUTE) must be held until COMPLETE or ERROR
becomes ON.
[Transmission Devices] CP-215, CP-216, CP-217, CP-218, CP-2500, CP-2520
[Protocols] MEMOBUS, non-procedural, MELSEC, OMRON
Hr-50
—— I EtECTE BOSY ——
———— ABORT CONPLETE [--——
==zzzaz) | DEV-TYP R —
Function xzsssea |PEO-TIP
Definition
s==zzee}|CIR-H0
=x===zzz) | CH-NQ
PARAN
I/O Definition |{No. Name VO Descripti
Designation* escription
1 | EXECUTE B-VAL Send message command
2 | ABORT B-VAL Send message forced interruption command
3 | DEV-TYP I-REG Type of transmission device
CP-215=1
CP-216=4
CP-217=5
CP-218=8
CP-2500=3
CP-2520 =17
4 | PRO-TYP L.REG Transmission protocol
* MEMOBUS =1
Input non-procedural = 2
5 | CIR-NO I-REG Line No.
CP-215=1t08
CP-216=1t0 8
CP-217=1to 24
CP-218=11t08
CP-2500=1to 8
CP-2520=1t0 8
6 (CH-NO I-REG Transmission buffer channel No.
CP-215=1+t013
CP-216=1to 3
CP-217=1
CP-218=11t0 10
CP-2500=1to0 14
CP-2520=1to0 15
7 | PARAM Address input| Head address of set data (MW, DW, #W)
1 | BUSY B-VAL Message is being sent. :
Output 2 { COMPLETE| B-VAL The sending of the message has been completed.
3 | ERROR B-VAL Occurrence of error

* : Indicates the I/O designation at the CP-717.

** : Designate the MEMOBUS protocol (= 1) if transmission is to be performed with the MELSEC
or OMRON procedure. Protocol conversion will be carried out at the transmission device (CP-
217, CP-218). Refer to (1) of 5.3.4, "OMRON Communication" or {2) of 5.3.4, "MELSEC
Communication" of the Control Pack CP-9200SH User's Manual (STE-C879-40.1) for details
on the protocol conversion specifications.

7-19

Contents. -
No. h-NIO MEMORBUS Non-procedural Remarks
00 | OUT | Process result Process result
01 { OUT | Status. Status . [
02| IN |Calledstation# Called station # Called connection # in the case of
: : . DEV-TYP = CP-218
03| SYS | System reserved System reserved
04§ IN | Function code
05| IN | Data address Data address
06 IN | Data size Data size
071 IN |Called CPU# Called CPU# .
08 IN | Coil offset

09| IN | Input relay offset
10| IN | Input regster offset
11] IN | Holding register offset

12 | SYS | For system use For system use

13 | SYS | Systemreserved |System reserved
14 | SYS | System reserved System reserved
15 | SYS | System reserved System reserved
i6 | SYS |System reserved - |System reserved

7.8.1 Parameters

{1) Process Result (PARAMOO)
The process result is output to the upper byte. The lower byte is for system analysis.
+ 0003 :In process (BUSY) _
- 1000 :End of process (COMPLETE)
- 80000 :Occurrence of error (ERROR)

[Error Classﬂicatlon]
- 81(J0J: Function code error :
The sending of an unused function code was attempted. Or, an unused function code was
© received. .
. 82000: Address settmg error
The data address, coil offset, input relay offset, input reglster offset, or holding registe:
offset setting is out of range.
- 83(00]: Data size error
The size of the sent or received data is out of range.
- 84[001: Line No. setting error
The line No. setting is out of range.
+ 85[01: Channel No. setting error
The channel No. setting is out of range.
- 86[00: Station address error
The station No. setting is out of range.
- 88[01: Transmission unit error.
An error response was returned from the transmlssmn unit. (Refer to (2) of 7.8.1.)
- 891071: Device selection error
A non-applicable device is selected.

i

4

1

7-20

(2) Status (PARMO1)
Outputs the status of the transmission unit.
(a) Bit Assignment

7. STANDARD SYSTEM FUNCTIONS

FEDCBAY987 6543210

-
HEEEEEE

> PARAMETER
» COMMAND
» RESULT
—— REQUEST
(b} COMMAND
Code Symbol Meaning
1 |U_SEND Send generic message.
2 |UREC Receive generic message.
3 |ABORT Forced interruption
8 |M_SEND Send MEMOBUS command --- completed upon receipt of response.
9 |M_REC Receive MEMOBUS command -- accompanies sending of response.
C |MR_SEND Send MEMOBUS response.
(c) RESULT
Code Symbol Meaning

1 | SEND_OK Sending has been completed correctly.
2 | REC_OK Receiving has been completed correctly.
3 | ABORT OK Completion of forced interruption
4 | FMT_NG Parameter format error
5 | SEQ NG, Command sequence error

or INIT_NG The token has not been received yet.

Not connected to a transmission system.

6 | RESET NG, Reset state

or O_RING_NG] Out-of-ring. The token could not be received even when the token

monitor time was exceeded,

7 | REC_NG Data receive error (error detected by a program of a lower rank)

(d) PARAMETER

One of the error codes of Table 7.2 is indicated if RESULT = 4(FMT_NG).
Otherwise, this indicates the address of the called station.”)

Table 7.2 Error Codes

Code

Error

00 No errors.

01 Station address is out of range.

02 Monitored MEMOBUS response receiving time error

03 Resending count setting error

04 Cyclic area setting error

05 Message signal CPU No. error

08 Message signal register No. error

07 Message signal word count error

{e) REQUEST
1 = Request
0 = Completion of receipt report

7-21

7-22

(3) Called Station # (PARAMO2)

[CP-215] ‘
1 to 64 : Message is sent to the designated station.
O00FFH : Message is sent to all stations (breadcastmg)
[CP-216]
1 to 30 : Message is sent to the designated station (poss1ble only. sendmg from the master stati
80H : Message is sent to the master station (possible only sending from a slave station).
Note : With CP-216, message transmission between slave stations is not possible.
[CP-217]
1 to 254: Message is sent to the station of designated dev1ce address.
[CP-218]
1 to 20 : Message is serit to the station of designated connection No.
[CP-2500] .
1 to 32 : Message is sent ‘to the designated station.
129 to 160 : Message is sent to the stations of des.ugnated group address (group transmissio
Q0FFH: Message is sent to all stations (broadcasting).
[CP-2520]
1 to 64 : Message is sent to the designated station.
O00FFH : Message is sent to all stations (broadcasting).

(4) Function Code (PARAMO4)

The MEMOBUS functlon code to be sent 1s set. '

. Function code Setting
00H | Unused : ’ X
01H | Read coil status O
02H | Read mput relay status O
03H i Read contents of holding register O
04H 1. Read contents of input register O
05H . Change status of single coil R O
06H I Write into a single holding register . O
07H 1" Unused X
08H | Loop-back test [@)
09H | Read contents of holding register (expanded) O
0AH | Read contents of input register (expanded) O
0BH : | Write into holding register (expanded) O
OCH { Unused X
. ODH | Discontinuous readout of holding register {expanded) O
OEH ' Discontinuous write into holding register (expanded) O
OFH '“Change status of a multiple coil . O
10H I Write into a plurality of holding reglsters O
11Hto 20H | Unused - X
21H to 3FH | System reserved ;
40H to 4FH | System reserved X
50H or more | Unused - %

(X : cannot be set, O: can be set)

Note : Only MW (MB) can be used as the sendmglrecemng register during master operation. T
MB, MW, IB, and IW registers can be used respectively as the coil, holding register, inp
relay, and input registers during slave operation.

(5) Data Address (PARAMO5)

7. STANDARD SYSTEM FUNCTIONS

The set contents will differ according to the function code as follows.

@ Request for readout from/write-in to coil or relay: Set the head bit address of the data.

@ Request for continuous readout from/write-in to a register: Set head word address of the data.
® Request for discontinuous readout from/write-in to a register: Set head word address of the

address table,
Function code Data Address Setting Range
Q0H Unused Invalid
01H | Read coil status 0t0 65535 (@ toFFFFH) |
02H | Read input relay status 01065535 (0to FFFFH) (@
03H | Read contents of hold register 0to32767 (0t 7FFFH) ,@
04H | Read contents of input register 0t032767 (Oto TFFFH) '@ |
05H | Change status of single coil 0t0 65585 (0 to FFFFH) |Q
06H | Write into a single holding register 01032767 (0t 7FFFH) |®
07H , Unused Invalid
08H | Loop-back test Invalid
09H | Read contents of holding register (expanded) 01032767 (0o 7FFFH) @
0AH | Read contents of input register (expanded) 0032767 (0to7FFFH) [®
OBH | Write into holding register (expanded) 01032767 (0o 7FFFH) |®
OCH | Unused Invalid
ODH | Discontinuous readout of holding register (expanded) 0 to 32767 (0 to 7FFFH) [®
OEH | Discontinuous write into holding register (expanded) 0 to 32767 (0 to TFFFH) | &)
OFH | Change status of a multiple coil 0 to 65535 (0to FFFFH} |
10H | Write into a plurality of holding registers 0 to 32767 (0 to 7FFFH) |@
(6) Data Size (PARAMO6)
Set the size (in number of bits or number of words) of the data that is requested for readout or
write-in. The setting range will differ according to the transmission module and the function code
to be used.
[CP-215]
Data Size Setting Range
Function code -
CP-215/CP-218/CP-2520 | CP-216/CP-217-CP-2500
00H | Unused Invalid

01H fRead coil status

1 to 2000 (1 to 07DOH)/number of bits

02H | Read input relay status

1 to 2000 (1 to 07DOH)number of bits

03H | Read contents of holding register

1 to 125 (1 to 007DH)/number of words

04H | Read contents of input register

110 125 (1 to 007DHYnumber of words

05H ; Change status of single coil Invalid
06H ; Write into 2 gingle holding register Invalid
07H ! Unused Invalid
08H | Loop-back test Invalid

ooH | Read contents of holding

1 to 508 (1 to 01FCH)number of words

1 to 252 (1 to OOFCH)/number of words

l register (expanded)

0A |Read contents of input register | 1 to 508 (1 to 01FCH)/mumber of words | 1 to 252 (1 to G0FCH)Ynumber of words
| texpanded)

OB |Wribe into holding register 1 to 507 (1 to 01FBH)number of words | 1 to 251 (1 to 00FBHYnumber of words
| {expanded)

0C | Unused Invalid

ob i Discontinuous readout of
, bolding register (extended)

1 to 508 (1 to 01FCH)mumber of words

1 to 252 (1 to 00FCH)/number of words

OF | Discontinuous write into
| holding register (extended)

1 to 254 (1 to 00FEH)number of words

1 to 126 (1 to 00TEHYnumber of words

OFH | Change status of multiple coil

1 to 800 (1 to 0320H)/number of bits

10H | Write into a plurality of
| holding registers

1 to 100 (1 to 0064H)number of words

7-23

7-24

(7) Called CPU # (PARAMO7)

Set the called CPU No.
When the sending destmatlon is CP 9200SH, set 1 or 2
For other cases, set 0. ;

{8) Coil Offset (PARAMO08) _
Set the offset word address of the coil.
This is valid in the case of funetion codes 01H, 05H, and 0FH.

{9) Input Relay Offset (PARAMO09) ;
Set the offset word address of the input relay. :
This is valid in the case of function code 02H.

(10) Input Register Offset (PARAM10)
Set the offset word address of the input register.
This is valid in the case of function codes 04H and OAH

(11) Holding Register Offset (PARAM11)
Set the offset word address of the holding register,
This is vahd in the case of function codes 03H, 06H 09H, OBH 0DH, OEH, and 10H.

(12) For System Use (PARAM1 2)
The channel No. being used is stored. Make sure that this will be set to 0000H by the us
program on the first scan after turning on the power. This parameter must not be changed by t
user program thereafter since this parameter will then be used by the system.

(13) Flelationsl;ip bétween the Data Address, Size and Oﬂéet

. =21 -
MW . [MSG-SND] [CP-215] [MSG-RCV]

Offset A '
) : B - o Offset

Data address B
MW Data adds
Data size T
Data size
__ 4

A = sending side offset address
B = sending side data address
C = receiving side offset address :

(14) When transmission protocol is set to non—proceduraf
The settings of PARAM04, PARAM0S, PARAMO09, and PARAM10 are not necessary. Transmissio
enabled reglster is only MW.

8.2 Inputs

7. STANDARD SYSTEM FUNCTIONS

(1) EXECUTE {Send Message Execution Command)

@)

)

4

(5)

(6)

)

When this command becomes "ON", the message is sent.
This must be held until COMPLETE {(completion of process) or ERROR (occurrence of error) be-
comes "ON".

ABORT (Send Message Forced Interruption Command)
This command forcibly interrupts the sending of the message. This has priority over EXECUTE
(send message execution command).

DEV-TYP (Transmission Device Type)
Designates transmission device type.

Transmission Device Type
CP-215 1
CP-216 4
CP-217 5
CP-218 6
CP-2500 3
CP-2520 7

PRO-TYP (Transmission Protocol)
Designates transmission protocol. When transmitting with MELSEC or OMRON procedures, specify
MEMOBUS protocol (=1). Protocol is converted by the transmission device (CP-217, CP-218).
MEMOBUS: Setting =1
Non-procedural; Setting = 2
For details of protocol conversion specifications, refer to the following manuals.
Control Pack CP-9200SH User's Manual (SIE-C879-40.1)
5.3.4 (1) “OMRON communications”
5.3.4 (2) “MELSEC communications”
Note: In non-procedural transmission, a response is not received from the other station.

CIR-NO {Circuit No.)
Designate the Circwit No.
Circuit No.

CP-215 1 to 8 (Option)
CP-216 1 to 8 (Option)
CP-217 1 to 24 (Option)
CP-218 1 to 8 (Option)
CP-2500 1 to 8 (Option)
CP-2520 1 to 8 (Option)

CH-NO (Channel No.)
Designate the channel No. of the transmission unit. However, the channel number should be set so
as not to be duplicated on a single line.

Channel No.
CP-215 1to 13
CP-216 1to 3
Cp-217 1
CPr-218 1to 10
CP-2500 1to14
CP-2520 1to 15

PARAM (Set Data Head Address)
The head address of the set data is designated. For details of the set data refer to 7.8.1. “Parameters.”

7-25

7.83 Outputs

(1) BUSY {In Process) ‘
Indicates that the process is bemg executed Keep EXECUTE set to "ON".

{(2) COMPLETE (Completion of Process)
Becomes "ON" for only 1 scan upon normal completion. -

{(3) ERROR (Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error.
Refer to PARAMOO (7.8.1 (1)) and PARAMO1 (7.8.1 (2)) coricerning the cause.

7-26

8.4

7. STANDARD SYSTEM FUNCTIONS

Limitations Arising from Other Companies’ Communications Protocols with the CP-217IF

(1) When Making a Dedicated Protocol Connection Link with the MELSEC Computer
M Communication is possible with type 1 protocol (response possible only for full-dual connec-
tion).

B With a MSG-SND function, receiving and sending with responce of ACPU common commands
to and from the MELSEC sequencer are possible, but commands that may be used are limited
(read out/write in of device memory, wrap test).

M Designate MEMOBUS protocol (=1) for input of the PRO-TYP (transmission protocol) of the
MSG-SND function. On the /O definition screen for the transmission port, if MELSEC master
is set, conversion to the corresponding MELSEC format is performed by the CP-217IF unit.
Change designated parameters at this time to parameters of corresponding MEMOBUS proce-
dures.

Refer to the following manuals for correspondence of MELSEC commands and MEMOBUS
function codes, and correspondence of registers for sending and receiving and device addresses
on the MELSEC side.
- Control Pack CP-9200SH User's Manual (SIE-C879-40.1)

5.3.4 (2) *‘MELSEC communications”

M In MEMOBUS — MELSEC format conversion, due to MELSEC protocol characteristic restric-
tions or MELSEC sequencer type characteristic restrictions, limits in addition to number of
read out words of a register and other MEMOBUS procedures arise, so carefully read manuals
related to connected equipment before using.

Furthermore be sure to refer to the manual related to MELSEC computer link dedicated proto-
col type 1 commands.

{2) When Making an OMRON Upward Linking Mode {SYSWAY) Connection
B With a MSG-SND function, sending and receiving with response of commands to and from the
OMRON sequencer are possible, but commands that may be used are limited (I/O relay/DM
read out/write, wrap test).

B Designate MEMOBUS protocol (=1) for input of the PRO-TYP (transmission protocol) of the
MSG-SND function. On the /O definition screen for the transmission port, if OMRON master
is set, conversion to the corresponding OMRON format is performed by the CP-217IF unit.
Change designated parameters at this time to parameters of corresponding MEMOBUS proce-
dures.

Refer to the following manuals for correspondence of OMRON commands and MEMOBUS func-
tion codes, and regarding correspondence of registers for sending and receiving and the relay
(CH)/DM area on the OMRON side.
- Control Pack CP-9200SH User's Manual (SIE-C875-40.1)

5.3.4 (1) “OMRON communications”

B In MEMOBUS — OMRON format conversion, due to OMRON protocol characteristic restric-
tions or OMRON sequencer type characteristic restrictions, limits in addition to number of read
out words of a register and other MEMOBUS procedures arise, so carefully read manuals re-
lated to connected equipment before using.

Furthermore be sure to refer to the manual related to OMRON communications procedures.

B This corresponds to transmission procedures by multi-programs stipulated in OMRON proce-
dures, but set the upper limit for the number of words that can be accessed with one instruction
to 125 words for DM register read out, and 100 words for write-in (restricted conditions of
MEMOBUS procedures).

7-27

7.85 Program Example

(Set the system register to O on the first scan.)

| soppi

[} 00000] _ . . [= D¥00012]
(Start onevery 1second) (Completion) ° (Error) (1-second delay forrise) (Command)
SB0O00032 DBO?/QZII DBo00Z12 5800038 DB000201
(Command held] . ' v ! O
DBO??ZOI (System Function)] .
(Command) — NESG-SND {In execution.)
DBOQQZOI - Kitani> Kitan DB00Q210
1 - EXECUTE . BUSY O—
(Fcly)ré:(?d éxa_iierruptmn) e (%omplet:ion)
: B
1 : ABORT ~ CONPLETE ﬁ%ll
(Transmission device type) o %?&5%12
F 00001 =======)|DEY-TYP ERROR —O—
- (Transmission protocol) N
l— 00001 ==zz=z==) PRO—TYP
(Line No.) o o
‘ F 00001 =======)ICIR-N0 -
(Transmission buffer channe] No.) ;
00001 =======) CB-NO ,
(Parameter address)
. PARAN
DAQQO00
I DBO??ZII S
(Pass counter) _
(F IN DV000241 E
| DBOgY212 N ‘
IFON
{Error counter)
INC D¥(0025
{Store process result.) :
- D¥00000 ; = DY00026
(LINK status) |,
- D¥00001 ‘ = D¥(0027
[EXD
DEND

7-28

9

7. STANDARD SYSTEM FUNCTIONS

Receive Message Function (MSG-RCV)
Name of Function MSG-RCV
Receives a message from a calling station which is on the line and which is designated
by the transmission device type. Supports a plurality of protocol types.
Function The execution command (EXECUTE) must be held unti! COMPLETE or ERROR
becomes ON.
[Transmission Devices] CP-215, CP-216, CP-217, CP-218, CP-2500, CP-2520
{Protocols] MEMOBUS, non-procedural, MELSEC, OMRON
e YO RCY,
—~———] ABORT CONPLETE——
====z==3 | DEY-TYP ERROR |
s=====5> | PRO-TYP
Function
Definition R
s======3 | CH-NO .
PARAY
I O . .
/0 Definition |No. Name Designation* Description
1 | EXECUTE B-VAL Receive message command
2 {ABORT B-VAL Receive message forced interruption command
3 | DEV-TYP I-.REG Type of transmission device
CPr-215=1
CP-216=4
CP-217=5
CP-218=6
CP-2500=3
CP-2520=17
4 | PRO-TYP I-REG Transmission protocol
* MEMOBUS =1
non-procedural = 2
5 | CIR-NO I-REG Line No.
Input CP-216=1t08
CP-215=1to08
CP-217=1to24
CP-218=1to 8
CP-2500=1t0 8
CP-25620=11t08
6 | CH-NO I-REG Transmission buffer channel No.
CP-215=1tol3
CP-216 =110 3
CP-217=1
CP-218=1t0 10
CP-2500 =110 14
CP-2520=1to 15
7 | PARAM Address input | Head address of set data (MW, DW, #W)
1 | BUSY B-VAL Message 1s being received. -
Output 2 [COMPLETE| B-VAL The receiving of the message has been completed.
3 { ERROR B-VAL Occurrence of error
)

*%

: Indicates the I/0 designation at the CP-717.
: Designate the MEMOBUS protocel (= 1) if transmission is to be performed with the MELSEC

_ or OMRON procedure. Protocol conversion will be carried out at the transmission device (CP-
217, CP-218). Refer to (1) of 5.3.4, "OMRON Communication" or (2) of 5.3.4, "MELSEC
Communication” of the Control Pack CP-9200SH User's Manual (SIE-C879-40.1) for details
on the protocol conversion specifications.

7-29

_ Contents s
No. INJOU MEMOBUS Process result Remar
00 | OUT | Process result Process result
01 | OUT | Status < - | Status
02 | OUT*| Calling station # Calling station # * Calhng connection # in the case of
. _ DEV TYP = CP-218.
03| SYS | System reserved System reserved
04 [. OUT | Function code)
05 | OUT | Data address Data address
06 | OUT | Data size Data size
07 | OUT | Calling CPU# Calling CPU#
08! IN .jCoil offset
091 IN |Inputrelayoffset
10| IN | Inputregister offset
11| IN [Holding register offset
12 IN | Write-in range LO
131 IN | Write-in range HI
14 | SYS | For system use For system use
15 | SYS | System reserved | System reserved
16 | SYS | System reserved System reserved

* When CP-218 is set for DEV-TYP, IN.

7.9.1

7-30

Parameters

(1) Process Resuft (PARAMOO)
The process result is output to the upper byte. The lower byte is for system analysis.
+ 000 : In process (BUSY)
1000 : End of process (COMPLETE)
8000 : Occurrence of error (ERROR)

[Error Classxﬁcatmn]

81[00: Function code error

An unused function code was received.

82[1[]: Address settirig error

The data address, coil offset, input relay offset input register offset, or holding regist
offset setting is out of range.

8300 : Data size error :

The size of the sent or received data is out of range:

84[00}: Line No. setting error

The line No. setting is out of range.

85000 : Channel No. setting error

The channel No. setting is out of range.

8600 : Station address error

The station No. setting is out of range.

838 EID Transmission unit error.

An error response was returned from the transmission unit. (Refer to (2) of 7.9.1 J

- 89[]0: Device selection error

A non-applicable device is selected.

7. STANDARD SYSTEM FUNCTIONS

(2) Status (PARAMO1)
Outputs the status of the transmission unit. See 7.8.1 (2), "Status (PARAMO1)" for details.

(3) Calling Station # (PARAMO02)
[CP-215, CP-216, CP-217, CP-2500, CP-2520)
The station number of sending side is output.
[CP-218]
1 to 20: The calling station connection number is set.

(4) Function Code (PARAMO04)
Outputs the MEMOBUS function code received,

Function code Output
00H | Unused X
01H | Read coil status O
02H | Read input relay status O
03H ., | Read contents of holding register O
04H | Read contents of input register @)
05H | Change status of single coil . O
06H ' Write into a single holding register O
07H ! Unused X
OfH | Loop-back test O
09H | Read contents of holding register (expanded) O
0AH | Read contents of input register (expanded) O
OBH | Write into holding register (expanded) O
0CH | Unused X
0DH | Discontinuous readout of holding register (expanded) O
OEH . Discontinuous write into holding register (expanded) O
OFH . Change status of a multiple coil O
10H | Write into a plurality of holding registers O
11H to 20H | Unused X
21H to 3FH | System reserved X
40H to 4FH | System reserved X
50H to | Unused X

(X : cannot be output, O: can be output)

Note : The MB, MW, IB, and IW registers can be used respectively as the coil, holding fegister,
input relay, and input registers during slave operation.

{5) Data Address (PARAMOS5)
The data address requested by the sending side is output.

(6) Data Size (PARAMO6)
The data size (number of bits or number of words) of the requested read or write is output.

(7) Calling CPU # (PARAMO07)
The calling CPU No. is output.
When the sending source is CP-92008H, 1 or 2 is output. For other cases, 0 is output.

(8) Coil Offset (PARAMDS)
Set the offset word address of the coil.
This is valid in the case of function codes 01H, 05H, and 0FH.

{9) Input Relay Offset (PARAMO09)

Set the offset word address of the input relay.
This 1s valid in the case of function code 02H.

7-31

7.9.2

7-32

(10) Input Register Offset (PARAM10)
Set the offset word address of the input register. :
This is valid in the case of function codes 04H and 0AH.

{11) Holding Register Offset (PARAM11) .
Set the offset word address of the hold register.
This is valid in the case of functlon codes 03H, 06H, 09H 0BH, 0DH, 0EH, and 10H.

{12) Write-in Range LO (PARAM12) erte-m Range HI (PARAM1 3)
Set the write allowable range for the request for write-in. A request which is 0uts1de of this ran
will cause an error.
This is valid in the case of function code 0BH, OEH, OFH and 10H. .
0 = Write-in Range LO = Write-in Range HI = Maxm:lum value of MW Address

{13)For System. Use (PARAM1 4)
The channel No. being used is stored. Make sure that this will be set to 0000H by the use
program on the first scan after turning on the power. This value must not be changed by the us
program thereafter since tlns parameter will then be used by the system.

(14) When Non-procedural is set for Transmission Protocol
PARAMO4 has no function. The settings of PARAMO08, PARAMO09, and PARAM10 are n
necessary. The message receivable register is only MW.

Inputs . . ’ . l

(1) EXECUTE (Receive Message Execution Command}
When this command becomes "ON", the message is received.
This must be held until COMPLETE (completmn of process) or ERROR (occurrence of erro
becomes "ON“

(2) ABORT (Receive Message Forced Interruption Command)
This command forcibly interrupts the receiving of the message This has priority over EXECUT
(receive message execution command).

(3) DEV-TYP (T ransmission Device Type)

Designates transmission device type.

Transmission Device Type
CP-215 1
CP-216 4
CP-217 5
CP-218 6
CP-2500 3.
CP-2520 7

7. STANDARD SYSTEM FUNCTIONS
(4) PRO-TYP (Transmission Protocal)
Designates transmission protocol. When transmitting with MELSEC or OMRON procedures,
designate MEMOBUS protocol (=1). Protocol is converted by the transmission device (CP-217,
CP-218).
MEMOBUS: Setting =1
Non-procedural: Setting = 2
For details of protocol conversion specifications, refer to the following manuals.
Control Pack CP-9200SH User's Manual (SIE-C879-40.1)
5.3.4 (1) “OMRON communications”
5.3.4 (2) “MELSEC communications”
Note: In non-procedural transmission, a response is not sent to the other station.

{5) CIR-NO (Line No.)
Designate the Circuit No.

Circuit No.
CP-215 1 to 8 (Option)
CP-216 1 to 8 {Option)
CP-217 1 to 24 (Option)
CP-218 1 10 8 (Option)
CP-2500 1 to 8 (Option)
CP-2520 1 to 8 (Option)

(6) CH-NO (Channel No.)

Designate the channel No. of the transmission unit. However, the channel number should be set
so as not to be duplicated on a single line. :

Channel No.
CP-215 1to 13
CP-216 1to8
CP-217 1
CP-218 1to 10
CP-2500 lto 14
CP-2520 1to 15

(7) PARAM (Setting Data Head Address)
The head address of the set data is designated. For details of the setting data, refer to 7.9.1.
- “Parameters.”

Outputs

{1) Busy {in Process)
Indicates that the process is being executed. Keep EXECUTE set to "ON".

{2) COMPLETE (Completion of Process)
Becomes "ON" for only 1 scan upon normal completion,

(3) ERROR {Occurrence of Error)

Becomes "ON" for only 1 scan upon occurrence of error.
Refer to PARAMOO (7.8.1 (1)) and PARAMO1 (7.8.1 (2)) concerning the cause.

7-33

7.94 Limitations Arising from Other Companies’ COmrnunicatioﬁs Protocols with the CP-217IF

{1}. When Making a Dedicated‘Protocol Connection Link with the MELSEC Computer
Hl Communication is possible with type 1 protocol (response possible only for full-dual connection

M With a MSG-RCV functioﬁ, receiving and sending with res-ponse of ACPU common comman
to and from the MELSEC master device are possible, but commands that may be used
limited (read out/write in of device memory, wrap test).

l Designate MEMOBUS protocol (= 1) by input of the PRO-TYP (transmission protocol) of t
.MSG-RCV function. On the I/O definition screen for the transmission port, if MELSEC slave
set, conversion to the corresponding MELSEC format is performed by the CP-2171F unit.
Change designated parameters to parameters of corresponding MEMOBUS procedures. Refi
to the following manuals for correspondence of MELSEC commands and MEMOBUS functio
codes, correspondence of registers for sending and recelvmg and device addresses on t
MELSEC side.

- Control Pack CP-9200SH User's Manual (SIE-C879-40.1)
5.3.4 (2) “MELSEC communications”

(2) When Making an OMRON Upward Linking Mode (SYSWAY) Connection
B With a MSG-RCV function, receiving and sending with responce of commands to and from |
OMRON master device are possible, but commands that may be used are Limited (I/O rela;
DM read out/write, wrap test).

[| Designate MEMOBUS protocol (= 1) for input of the PRO-TYP (transmission protocol) of t
MSG-RCV function. On the I/O definition screen for the transmission port, if OMRON slave

. set, conversion to the corresponding OMRON format is performed by the CP-217IF unit.
Change designated parameters to parameters of corresponding MEMOBUS procedures.
Refer to the following manuals for correspondence of OMRON commands and MEMOBU
funetion codes, regarding correspondence of registers for sending and receiving and the rel
(CH)IDM area on the OMRON side. 8T

- Control Pack CP-9200SH User's Manual (SIE-C879-40.1)
" 5.3.4 (1) “OMRON communications”

M This corresponds to transnussmn procedures by multi- -programs stipulated in OMRON proce
dures, but set the upper limit for the number of words that can be accessed with one instruc
tion to 125 words for DM register read out, and 100 words for writing (restricted conditions ¢
MEMOBUS procedures).

7-34

5

Program Example

(Set the system register to 0 on the first scan.)

SB000003

[00000]

o

I~ 32767

(System Function)

{Command: Always ON}
53090004
~— -

(Forced interruption)
DB000208 .
L

11

(Transmission device type)
00001

(Transmission protocol)
00001 =======

(Line No.)
00001

Zz=—=——=)

(Transmission buffer channel No.)
00001

MSG-RCV -
EXECUTE BUSY
ABORT COMPLETE
DEV-TYP ERROR
PRO-TYP
CIR-NO
CH-NO
(Parameter address)
PARAM

DAOQ000

7. STANDARD SYSTEM FUNCTIONS

[=> DW00014]

(Write-in range LO)
= DW00012

{Write-in range HI)
= DW00013

(In execution)

DB000210

—O—
(Completion)
DB000211

-0——
{Error)
DB00D212

DB000211

(Pass counter)

[INC DW00024]

I DB000212
|__,_

IFON

{Error counter)
INC DW00025

(Store process result)
- D¥00000

(LINK status)
- D¥00001

IEND

DEND

'

= DW00026

= DW00027

7-35

7.10 Counter Function (COUNTER)
Name of Functionj COUNTER

Increments or decrements the current value when the count up/down command (UP-

CMD, DOWN-CMD) changes from OFF to ON.

When the counter reset command (RESET) becomes ON, the current counter value is

set to 0. Also, the current counter value and the set value are compared and the

comparison result is output.

* The current value will not be incremented ne1ther decremented if a counter error
(current value > set value) occurs.

Function

. ' COUNTER ‘
———— UP-CiD GNT-UP }———

Function N DOW-lb> - ONT-ZERO———

Definition : — e IRESET CNT-ERR

{NT-DATA

/O Definition |No.] Name Desi glfgtion
UP-CMD B-VAL Count up command (OFF — ON) Data area for

DOWN-CMD|B-VAL Count down command (OFF —~ ON) O o Doroes®
RESET B-VAL Counter reset command 2: Current value
CNT-DATA |Address input | Head address of data area for counter | 3: Work flag
process (MW or DW register) '
CNT-UP B-VAL Becomes ON when current counter value = set value:

Descnptlon

Input

W (S0 | IND [k

=1

Output 2 |CNT-ZERQ |B-VAL Becomes ON when current counter value = 0.

3 |CNT-ERR |B-VAL Become;s ON when current counter value > set value.

*. Indicates the I/O designation at the CP-717.

7-36

11

First-in First-out Function (FINFOUT)

7. STANDARD SYSTEM FUNCTIONS

ame of Function

FINFOUT

This is a first-in first-out type block data transfer function. The FIFO data table is
composed of a 4-word header part and a data buffer. 3 words of the header part (data
size, input size, output size) must be set before this function is referenced.

* When the data input command (IN-CMD) becomes ON, the designated number of
data is sequentially stored from the designated input data area to the data area of
the FIFO table.

Function * When the data output command (OUT-CMD) becomes ON, the designated num-
ber of data are transferred from the head of the data area of the FIFOQ table to the
designated output data area.

* When the reset command (RESET) becomes ON, the number (amount) of data
stored is set to zero and the FIFO table empty output (TBL-EMP) becomes ON.
- If "size of available space for data (empty size) < input size" or if "data size <
output size," the FIFO table error {TBL-ERR) becomes ON.
FINFOUT
—————1 IN-CMD TBL-FULL
— O0UT-CiD TBL-E¥P
Function ——RESET - TBL-ERR
Definition
FIFO-TBL
IN-DATA
OUT-DATA
I/O Definition |No.] Name Desiglxﬁ tion* Description
Input 1 {IN-CMD B-VAL Data input command (IN-CMD) FIFO Table
2 |OUT-CMD |B-VAL Data output command (OUT-CMD)| Configuration
3 |RESET B-VAL Reset command 0 : data size
4 |FIFO-TBL |Addressinput| Head address of FIFO table L :input size
{MW or DW address) g outpt;t sm;a
5 |[IN-DATA Address input| Head address of input data ’ 3:5; ;:;: od
(MW or DW address) 4:data
6 |OUT-DATA |Address input| Head address of output data
(MW or DW address)
Output 1 |TBL-FULL |B-VAL FIFO table is full.
2 {(TBL-EMP |B-VAL FIFO table is empty.
3 |TBL-ERR |B-VAL FIFQ table error

* : Indicates the I/O Designation at the CP-717.

7-37

APPENDIX

APPENDIX

The contents of Appendix are as follows: l

Appendix A: Types of Instruction Words
Appendix B: List of Instructions

Appendix C: Differences on Programming between
CP-9200H and CP-9200SH

The data type (bit type, integer type, double-length
integer type, real number type) that can be used will
differ for each instruction. Refer to Chapter 4 "BASIC
INSTRUCTIONS" for details.

A

A2

Types of Instruction Words

Type of Instruction Word Instruction Words
Program control instruction | SEE FOR WHILE ON/OFF IFON/IFOFF
‘ " | ELSE END FSTART FIN FOUT COMMENT
XCALL
Direct /O instruction INS OUTS

Relay circuit instruction .

- S —— 34— — { ——
— %— —oH ~SH —RH —— —— —

Logical operation instruction

AV B

Numerieal operation instruction

F =+ - ++ -- X =+
INC DEC MOD REM TMADD TMSUB SPEND

Numerical conversion instruction

INV COM ABS BIN BCD PARITY ASCII BINASC ASCBIN

Numerical comparison instruction

< = = =+ = > RCHK

Data operation instruction

ROTL ROTR MOVB MOVW XCHG SETW
BEXTD BPRESS BSRCH SORT SHFTL SHFTR
COPYW BSWAP

Basic function instruction

|SQRT SIN COS TAN ASIN ACOS ATAN EXP LN LOG

DDC instruction

DZA DZB LIMIT PI PD PID LAG LLAG

|FGN IFGN LAU SLAU PWM

Table data operation instruction

TBLBR TBLBW TBLSRL TBLSRC TBLCL TBLMV

.|QTBLR QTBLRI QTBLW QTBLWI QTBLCL

STFC instruction

SFC - =z + ABOX SBOX AEND SFCSTEP -

System function

COUNTER FINFOUT TRACE DTRC-RD FTRC-RD
ITRC-RD MSG-SND MSG-RCV ISET-213 ICNS-WR

ICNS-RD

APPENDIX
List of Instructions
[1] e Device Model
Type Name Symbol Instruction Descnptlon CP-92008H CP-9200R
SEE child drawing| SEE O | Designate the No. of the child or O O
grandchild drawing to be
referenced after "SEE"
SEE H(O1
FOR statement FOR Loop execution statement - 1 Q O
[FORV=atobbyc
FEND \') : arbitrary integer register
May specify as I or J.
a, b, c: May specify an arbitrary
integer. (b>a>0,c>0)
FEND: END of FOR instruction
WHILE statement | - WHILE Loop execution statement - 2 O O
- ON/OFF
ogram WEND : END of WHILE-ON OFF
F“"l . L WEND instruction
tructlons . :
IF statement ~ IFON/IFOFF Conditional execution statement Q O
- ELSE
IEND: END of IFON/IFOFF
- TEND instruction
END FEND The exclusive END instruction is O O
WEND indicated automatically by the
IEND CP-717 for each of the above
DEND statements. DEND is indicated
for the END of a drawing. Only
"END" is accepted as an input
from the CP-717; FEND, WEND,
ete. will not be accepted.
COMMENT "nnnnnnnn” Character strings enclosed in O O
* "l be handled as a
comment.
Note) O mark in the "[] Instruction” column means that "[]" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

(continued)

Type

Name

Symbol

[l .
Instruction

Deseription

Device Model

CP-92008H | CP-920

control
Instructions

Funection I/F

FSTART

Function referencing instruction

O O

Function input instruction
Stores input data from the designated
input register into the function input
register. '

Designated input register

CPU internal register (B register)
CPU internal register (A register)
CPU internal register (A register)
CPU internal register (F register)
arbitrary integer register
arbitrary double-length integer
register .- _

F-REG : arbitrary real number register
Address input '

B-VAL:
I-VAL :
L-VAL:
F-VAL:
IREG :
L-REG:

O O

e - .

FOUT

Function output instruction
Stores cutput data from the function
output register to the designated output
. register. , .
Designated output register
B-VAL : CPU internal register (B register)
I-VAL : CPU internal register (A register)
L-VAL : CPU internal register (A register)
F-VAL : CPU internal register (F register)
I-REG : arbitrary integer register
L-REG: arbitrary double-length integer |
- register

F-REG: arbitrary real number register

Expansion
program
execution
instruction

XCALL

Instruction for referencing an expansion
program®.)

Direct VO
Instructions

Input
instruction
(interruption
prohibited)

INS

INS MA00100 ——— (O

Data input and storage are executed with
interruption prohibited. .

Qutput

instruction
(interruption
prohibited)

OoUTSs

OUTS MA00100 ———-O—
The setting and output of data are executed
with interruption prohibited.

"1, There are four types of expansion programs which reference this instruction: constant table (M register
I/0 conversion table, interlock table, and part composition table.

(Note) O mark in the "[] Instruction " column means that "[]" (conditional execution according to the val
of the immediately preceding B register) can be added to the instruction .

A4

APPENDIX

{continued)
[1 e Device Model
N Symbol .
Type ame y Instruction Description CP-9200SH] CP-9200H
No limit in the serial circuit.
Bit type designation of any register as O O
NO contact Ak a relay number is possible
(MB00011A).
No limit in the serial circuit.
Bit type designation of any register as O O
NC contact - a relay number is possible
(MBO0O0O11A).
No limit in the serial circuit.
) Bit type designation of any register as O O
Rise pulse ——= a relay number is possible
(MBO0O0011A). -
No limit in the serial circuit.
= Bit type designation of any register as O O
Fall pulse = a relay number is possible
(MB00011A).
On-delay timer Set value: count register
(Unit of measure-{ - F .y | O O
ment: 10 ms) ‘
elay 3 : Set value: any register,
ircuit (OLiIi]'ltiiteﬁ_y n?:;:flre_ 1% constant (setting unit: 10ms) o o
hstructions ment; 10 ms) Count register : M or D register
On-delay timer Set value: count register
(Unit of measure-| -* . O
ment: 1s) 1 F
Off-delay timer Set value: any register,
(Unit of measure-| - °}F constant (setting unit: 1s) O
ment: 1s) Count register : M or D register
MB000000
- MWO00200= 00001 ———(O—|
Coil o | MB00000O O O
| — —
IFON
MBO000000 MBO000010
i {s}—
Set coil {sH By turning MB000000 “ON,” O O
MB000010 turns “ON.” Subsequently,
even if MB00000O turns “OFF,” it
stays “ON.”
ME000020 MBO000Q10
| — R
Reset coil 4RH By turning MB000020 “ON,” O O
. MB00Q0010 turns “OFF.” Subsequently, _
even if MB0O00020 turns “OFF." it
stays “OFF.”
Branching/ A branching or converging indication
convergence 3 can be attached to any of the above O O
point instruction |~ ¥ relay type instructions.
Note) O mark in the "[] Instruction” column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

A-5

(continued)

Type

Name

Symbol

L}
Instruction

Descriptioﬁ

Device Model

CP-92008H

CP-92

Logical
Operation
Instructions

AND

o

Integer type designation of any register
or constant is possible.

O

OR

O

Integer type designaﬁon of any regiéter
or constant is possible.

O

Exclusive OR

Integer type designation of any register
or constant is possible.

Numerical
Operation
Instructions

Integer type entry

Starts integer type operation.
F MW00280+00100 = MW00220

O

Real number type’
entry

Starts real number type.operation.
[F MW00280+00100 = MWO00220

O

Store

Stores operation result in designated
register.

Add

Ordinary numerical addition

(with operation error).*

F MW00280+00100 = MW00220
All registers and constants can be
designated

Subtract

Ordinary numerical subtraction
(with operation error).*

- MW00280-00100 = MW00220

- All registers and constants can

be designated.

Extended add

Closed numerical addition
(without operation error).

32768+1=-32768
0— 32767 —-32768— 0

Extended subtract

Closed numerical subtraction
(without operation error).

-32768-1=32767
0—-32768 — 327670

Multiply

O

Divide

0

In the case of integer type and double-
length integer type, use X and +in
combination.

O

O

O

@)

*. On the CP-9200H, an operation error will not occur with double-length operations. On the CP-32005]
operation error will occur with double-length operations.

(Note) O mark in the "[] Instruction” column means that "[|" (condltlonal execution according to the valt
of the immediately preceding B register) can be added to the instruction .

APPENDIX

continued)
[1] L. Device Model
Type Name Symbol {1, truction Description CP.9200SH] CP-5200H
Increment INC O Adds 1 to the designated register. O O
s INC MW00100
If MWO00100= 99, the operation result
= 100.
Decrement DEC (O |Subtracts 1 from the designated O O
register.
DEC MW00100
If MW00100= 99, the operation result
=98,
remgindgf MOD = MW00101 O O
erical In this example, the remainder of
eration division is taken out.
tructions :
type remainder =MF00202
In this example, the remainder of
division is taken out.
Time addition TMADD O Addition of hrs/min/sec O
TMADD MWO00000, MW00100
Time subtraction | TMSUB O Subtraction of hrs/min/sec O
TMSUB MWO00000, MW00100
Time spend SPEND O Finds elapsed time between two times. | (O
(Difference in yr/mo/day/hr/min/sec in
total number of seconds.)
SPEND MWO00000, MW00100
(Note) O mark in the "[] Instruction " column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruetion .

A7

" {eontinued)

. Device Model
Type Name Symbol Insn[.ugﬁon Description CP-BZ(?;SI;: CI(’)-Q;3
Signinversion |- INV - | O |FMWooi00 INV O O
If MWO00100= 99, the operation result
' =-99. : :
| Complement - COM O MW00100 COM O O
of 1 : If MW00100=FFFFH, the operation
result=0000H .
Absolute value | - ABS ‘O | FMWO00100 ABS O
conversion . .| If MW00100=-99, the operation
_ result=99
Binary " BIN O | FMW00100 BIN O
conversion ' If MW00100=1234H (hexadecimal),
the operation resuit = 01234 (decimal).)
BCD conversion BCD O - MW00100 BCD O
Numeric_al If MW00100= 1234 (decimal), the
Conversion operation result = 1234H
Instructions (hexadecimal).
Parity PARITY | O |Calculates the number of binary O
conversion ' : expression bits that are ON (= 1).
I MW00100 PARITY
If MW00100= FOFOH,
the operation resulf, =8.
ASCII -ASCII C |The designated character.string is O
conversion 1 converted to ASCII code and
substituted in the register.
ASCII MWo0200 "ABCDEFG"
Ascm BINASC [-O |Sixteen-bit binary data is converted to | O
conversion 2 : four-digit hexadecimal ASCII code.
BINASC MWO00100
ASCIl ASCBIN O |The numerical value indicated by a O
conversion 3 - four-digit hexadecimal ASCII code is
' converted to 16-bit binary data.
ASCBIN MWO00100

(Note) O mark in the "[] Instruction " column means that "[]" (conditional execution according to the valy
of the immediately preceding B register) can be added to the instruction .

A-8

APPENDIX

(continued)
[] . Device Model
Name Symbol . D £
Type am 4 Instruction eseription CP-92008H] CP-9200H
< < (O | ONor OFF is left in the B registeras | O O
a result of the comparison instruction.
< = O MBogoo1o| O O
F MW00000<10000
= = O MBO00010 O O
l—..
* * O |IFON O O
umerical
mparison = P O O O
tructions
> > O O O
Range check RCHK O Checks whether the value in the A @
register is in range or not.
Lower Upper
Limit Jimit
F MW00100 RCHK -1000, 1000
If it is in range B register turns ON, if
out of range, OFF.
Bit rotation (L) ROTL @ Bit-addr Count Width O
(left rotation) ROTL MBOOIOOA — N=1 W=20
Bit rotation (R) ROTR O Bit-addr Count Width O
(right rotation) . ROTR MBOO100A — N=1 W=20
Bit transfer MOVB O Source Desti. Width O
MOVE MBO010CA —*M:B00200A W=20
Word transfer MOVW O Source Desti, Width O O
MOVW MW00100 — MWO00200 W =20
Exchange XCHG O Sourcel Source2 Width O O
E“a . XCHG MWO00100 — MW00200 W = 20
peration
structions
Table SETW O Desti. Data. Width O
initialization SETW MW00200 — D = 00000 W =20
Byte — BEXTD (O | The binary data string stored in the O
word development word form register area is developed a
byte at a time into words.
BEXTD MW00100 to MW(0200
B=10
Word — BPRESS (O | The lower byte only of the word data Q
byte compression stored in the word form register area
are gathered into a byte string.
BPRESS MW00100 to MW00200
B=10
(Note) O mark in the "[] Instruction " column means that "[]" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

A9

{continued)

13 Descrintion Device Mode
Instruction P CP-9200SH | CP-92

Type Name _Symbol

Data search - BSRCH |- (O .|A searchis made, within the O
. | designated register range, for the

position of data which match the

stipulated data.

BSRCH MWO00000 W =20 D=100

R = MWO00100 .-

Sort ' SORT O A sort is performed on registers within| . O
the designated register range.
SORT MW00000 W =100

Bit shift left SHFTL (O | The designated bit strings are shifted O
: - to the left.

Data SHFTL MBO010CA N=1 W=20

Operation
Instructions

Bit shift right SHFTR O The designated bit strings are shifted O
‘ to the right.
SHFTR MB00100A N=1 W=20

Word copy | COPYW O The designated register range is O
' copied. Even if there is overlap
between the copy destination and copy
source, the copy will be correctly

o performed.
’ . COPYW MWO00100— MW00200 W=

20 _ | O

Byte swap - BSWAP O The upper and lower bytes of the
; designated word variable are

swapped.

BSWAP MW 00100

(Note) O mark in the "[] Instruction " column means that "[J" (corild.itional execution according to the val
of the immediately preceding B register) can be added to the instruction .

A-10

APPENDIX

continued)
[1] o Device Model
Type Name Symbol |y otruction Description CP-92008H] CP-9200H
Square root SQRT (O |Taking the square root of a negative O O
number will result in the square root
of the absolute value multiplied by -1.
I-MF00100 SQRT
Sine SIN O Input = in degrees O O
IFMF00100 SIN
Cosine COS O Input = in degrees O O
~ [FMF00100 SIN
Tangent TAN O Input = in degrees O O
I-MF00100 TAN
eton | Arc sine ASIN O |I-MF00100 ASIN O ©)
structions '
Are cosine ACOS O |IF-MF00100 ACOS O @
Arc tangent ATAN O |IFMF00100 ATAN O O
Exponent EXP O IFMF00100 EXP O O
GMF00160
Natural log LN O IFMF00100 LN O O
loge(MFO{HOO)
Common log LOG O [FMF00100 LOG O O
logm(MFO(]lOO)

When using a basic function instruction with integer type data, scaling is necessary. For details, refer to
Chapter 4 "BASIC INSTRUCTIONS".

(Note) O mark in the "[] Instruction " column means that "[1" (conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

A-11

(continued)

[1] .. ' Device Model
. Symbel)
Type Name ym Instruction Description | CP-92005H] CP-920
Dead zone A DzA | - O |FMW00100 DZA 00100 O O
Dead zone B * pzB | .C MW00100 DZB 00100 - O | O
Upperflower limit | LIMIT | O | +-MWO00100 LIMIT -00100 00100 O O
PI control PI O - | FMW00100 PI MAOO 200 O O
PD control PD O MW00100 PD MA00200 O O
PID control PID | O |FMWo00100 PID MA00200 O |" O
First-order lag LAG O FMWO00100 LAG MA00200 O O
DDC | phagelead-lag LLAG.| O |FMWo00100 LLAG MA00200 O O
Instructions
Function FGN O FMW00100 FGN MA00200 QO O
generator ’) .
Inverse function | IFGN-| O |FMW00100 IFGN MA00200 O O
generator ’)
Linear accelerator | LAU . O FMW00100 LAU MA00200 O O
unit 1
Linear accelerator | SLAU O - MWO00100 SLAU MA00200 O O
unit 2 '
Pulse width - PWM C | FMW00100 PWM MA00200 O O
modulation : . -

‘| MNote) O mark in the "['] Instruetion " column means that "{]" (conditional execution according to the valy
of the immediatgly preceding B register) can be added to the instruction .

A-12

APPENDIX

ontinued)
[1] .. Device Model
Symbol .

Type Name ymbol |, rmction Description CP-200SH] CP-3200m
Block read TBLBR | O |TBLBR TBLI1, MAG000O, MA00100 | O
Block write TBLBW O |TBLBW TBL1, MA00000, MA00100 O
Row search TBLSRL (O |TBLSRL TBL1, MA00000, MAOO100| O
{vertical)
Column search |TBLSRC| (O |TBLSRC TBL1, MA00000, MAoo1oo| O
(horizontal)
Block transfer TBLMV O |TBLMV TBL1, TBL2, MA00O00OO O

ble Data between tables

ti

i | Cuetableread | QTBLR| O |QTBLR TBL1, MA00000, MA00100 | O
(pointer
statlonary)
Cue table read QTBLRI @] QTBLRI.TBL1, MA000OOO, MAQO100 O

_ (pointer advances)

Cuetablewrite |QTBLW| (C |QTBLW TBL1, MA00000, MAG0100 | O
(pointer
stationary)
Cue table write |QTBLWI} (O |QTBLWI TBL1, MA00000, MA0O100| O
(pointer advances)
Clear cue pointer {QTBLCL{ (O |QTBLCL TBL1 O

(Note) O mark in the "[] Instruction " column means that "[]" (conditional execution according to the value

of the immediately preceding B register) can be added to the instruction .

A-13

(continued)

: 1 .. Device Model
Type Name Symbol i\ ction Description P 500SH] CP9m
SFC execution SFC SFC O O
—— EXECUTE OUT [—
MA[COOI0
NO contact - — Designaﬁion of transition condition O O
transition ’ == IBO010A (Cannot modify with a subscript.)
judgment .]
NC contact — Designation of transition condition | O O
transition == MBO0012B (Cannot modify with a subscript.)
[judgment - :
* | Timer transition |' + Transition timer set value + O O
judgment ' + 10.00 (Cannot modify with a subseript.) |-
SFC . ———
Instructions) Action box ABOX ABOX S10: The corresponding O O
' program is executed on each scan.
after transition to step box S10 and
until transition to the next step.
' - SBOX SBOX 811: The corresponding O O
! : program is executed just once upon
transition to step box S11.
End action box AEND End of SFC action box. O O
; . .
Branching/ F o Designation of branching point, @) O
convergence point convergence point, and convergence
instruction connection of SFC.
SFCstepentry |SFCSTEP| O SFCSTEP STEP name — Dwooooo | O
Store system STEP No. of designated
STEP in the A register.

(Note) O mark in the "]] Instruction " column means that "[1" (conditional execution according to the valy
of the immediately preceding B register) can be added to the instruction .

A-14

APPENDIX

continued}
[1 . Device Model
Type Name Symbol Instruction Description CP9250SH CP9200H
Counter COUNTER Up/down counter @, O
First-in first-out| FINFOUT First-in first-out function O O
Trace function TRACE" Write-in of trace data into the data @) O
frace memory. '

Data trace read { DTRC-RD™ Readout of data from data trace O O
function memory to user memory
Failure trace FTRC-RD Readout of data from failure trace O
read function memory t0 user memory.
Inverter trace ITRC-RD Readout of data from inverter trace @)

tem .

ctions read function memory to user memory.
Send message | MSG-SND" Send CP-215/CP-216/CP-217/CP-218/ O O
function CP-2500 message.
Receive MSG-RCV™ Receive CP-215/CP-216/CP-217/CP- O @
message 218/CP2500 message.
function
Inverter ICNS-WR Applies to the inverter connected to
constant write : CP-215 or CP-216. O
function
Inverter ICNS-RD Applies to the inverter connected to O
constant read CP-215 or CP-2186.
function :
CP-213 initial | ISET-213 Sets the initial data for the inverter O
data setting connected to the CP-213 line.

The CP-92005H and the CP-9200H are slightly different.
t Equivalent to TRACE-RD function on the CP-9200H.

(Note) O mark in the "] Instruction " column means that "[]" {(conditional execution according to the value
of the immediately preceding B register) can be added to the instruction .

A-15.

Cc

For details of each instruction, refer to Chapter 4 "BASIC INSTRUCTIONS".

Differences on Programming between CP-9200H and CP-9200SH

Model CP-920058H
Item TMB I MEB CP-9200H Remarks
1 |Additional |Program control [XCALL"
instructions |instruction i
A Data transfer ROTR, ROTL, MOVB,
instruction SETW, COPYW, SHL, SHR
DDC instruction |RCHX None
SFC instruction ~_[SFCSTEP :
System function |(FTRC-RD -
Sequence’ s H (set coil)
" linstruction JdRH (reset coil)
2 [Modified DDC instruction |LAU (with both functions |LAU and VLAU
instructions of LAU and VLAT) . -
SLAU (with both functions |[SLAU and VSLAU
of SLAU and VSLAL) : L
System function |{DTRC-RD TRACE-RD
, : TRACE - TRACE
- IM8G-SND SND
" |MSG-RCV RCV
Direct 1/Q INS, OUTS IN, OUT - j
instruction : .
3 [Deleted DDC instruction None LPID ‘- As CP-9200SH has no
instructions |System function . MC-WRITE memory card connection
None MC-REA function, the functions
: MC-CHK related to memory card
' ' : Nene LMUL (MC-WRITE, MC-READ,
: None LDIV MC-CHEK) are deleted.
- CP-9200SH supports
. double-length integer
, multiplication/division
. function (LMUL, LDIV) by
. . the instructions X and <.
4 |Application capacity equivalent to equivalent to
12 k steps/CPU 4 k steps/CPU
5 |Data Register common |32 k words/CPU 16128 words - With CP-9200H, M, I, and
memory to all DWGs (M) -) (common for CPUs) registers are common for
Input register 5 k words/CPU 128 words : CPUQ and CPUL.
O (common for CPUs) With CP-92005H, they are
Output register |5 k words/CPU 128 words unique each for CPUL and
Q) (common for CPUs) CPU2.
System register |1 k words/CPU 256 words/CPU - With CP-9200H, D registen
) ; ’] : is common to all DWG's.
Register unique = |Max. 16 k wordsfOWG, 2 k words/CPU With CP-92008H, it is
" {to each DWG (I} |function . unique to each DWG.
DWG constant Max. 16 k words/DWG, Max. 512 words/DWG | - With CP-9200H,I and O
register @) function ' registers are cleared at the
Common constant [16 k words/CPU None power turned ON. With CP
register (C)) 9200SH, they are not
cleared at the power turnec
ON.
« The number and contents o
S register are different
. between CP-9200H and CP
' 9200SH.

A-16

APPENDIX

ontinued)
Model CP-9200SH
tem TMB I SMB CP-9200H Remarks
Trace Data trace Mazx. 128 k words 192 k words (common | - With CP-92005H, when the
memory (32 k words for CPUs) (32 k words | trace memory is not used, it
X 4 groups)y/CPU X 3 groups) can be used for user
Failure trace Mazx. 4 k words None program area.
(64 items X 450)/CPU
Table programming Possible Not possible
Drawing/ Starting (A) 64 drawings 32 drawings
function High-speed scan {100 drawings 32 drawings
capacity (H)
Low-speed scan {100 drawings 32 drawings
&)
Interruption (I) {64 drawings 32 drawings
User function 100 functions 32 drawings
Number of 500 steps 300 steps
steps/DWG,
function
Drawing 3 lays 2 lays
hierarchy
Shared memory between CPUs |Possible when M register |M register
is set on the screen
0 |Program secret protection Possible in units of drawing [Possible in units of
CPU
1 [Calendar function Provided Not provided
2 IMEMBUS I'F M and I register SLO,MandD
(possible by CPU} register
3 |Servo Area Fixed /O register Common with - For CP-920058H, the
parameter (128 words/axis) M register number and arrangement of
(AWCO000 to IWFFFF, {50 words/axis) servo parameters and their
OWC000 to OWFFFF) MW00000 functions are partly
to MW00399) different from those of
Servo fixed Settings on the screen Setting of M register CP-9200H.
parameter (separated from (included in servo
8ervo parameter) parameter)
L4 |Temperature input The system function Temperature input
MSG-SND is used. display
15 |Compatibility of user program |Provided with source -
conversion tool to convert
the user program for
CP-9200H to that for
CP-9200SH.
16 [Batch loading At batch loading, program |At batch loading,

memory and data memory
(5, I, O, M, and D register)
for each CPU are cleared.

program memory and
data memory (S and
D register) for each
CP1J are cleared, but
M register is not
cleared.

A-17

MACHINE CONTROLLER CP-9200SH
PROGRAMMING MANUAL

TOKYO OFFICE
New Pier Takashiba South Tower, 1-16-1, Kaigan, Minatoku, Tokyo 105-6891 Japan
Phone 81-3-5402-4511 Fax 81-3-5402-4580

YASKAWA ELECTRIC AMERICA, INC.
2121 Noman Drive South, Waukegan, IL 60085, U.S.A.
Phone 1-847-887-T000 Fax 1-847-887-7370

MOTOMAN INC. HEADQUARTERS
BO5 Liberty Lane Wast Carroliton, OH 45449, U.S.A.
Phone 1-937-847-6200 Fax 1-937-847-6277

YASKAWA ELETRICO DO BRASIL COMERCIO LTDA.
Avenida Fagundes Filho, 620 Bairo Saude-Sao Piulo-SP, Brazil CEP: 04304-000
Phone 55-11-5071-2582 Fax 55-11-5581-8795

YASKAWA ELECTRIC EUROPE GmbH
Am Kronbarger Hang 2, 65824 Schwalbach, Germany
Phona 49-6196-560-300 Fax 49-6196-388-301

Motoman Aobotics Europs AB
Box 504 538525 Torsis, Swaden
Phone 46-486-48800 Fax 46-486-31410

Motaman Robotec GmbH
Kammerfeldstrage 1, 85391 Allershausen, Gemmany
Phone 49-8166-300 Fax 49-8166-9039

YASKAWA ELECTRIC UK LTD.
1 Hunt Hill Orchandion Woads Cumbemaukd, GB8 9LF, United Kingdom
Phone 44-1236-735000 Fax 44-1236-458182

YASKAWA ELECTRIC KOREA CORPORATION
Kfpa Bidg #1201, 354 Youido-dong, Yeongdungpo-Ku, Seoul 150-016, Kovea.
Phone 82-2-784-7844 Fax 82-2.784-8495

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.
151 Lorong Chuan, #04-01, New Tech Park Singapore 556741, Singapore
Phone 65-282-3003 Fax 65-288-3003

YASKAWA ELECTRIC (SHANGHAI) CO., LTD.
4F No.18 Aona Road, Wagaogiao Fres Trade Zone, Pudong New Ama, Shanghai 200131, China
Phone 86-21-5866-3470 Fax 86-21-5866-3869

YATEC ENGINEERING CORPORATION
Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei, Taiwan
Phone 888-2-2563-0010 Fax BB6-2-2567-4677

YASKAWA ELECTRIC (HK) COMPANY LIMITED
Rm. 2909-10, Hong Kong Plaza, 186-191 Connaught Road Wast, Hong Kong
Phone B52-2803-2385 Fax 852-2547-5773

BEWING OFFICE

Room No. 301 Office Bullding of Beiiing Intemational Club, 21
Jianguomanwai Avenue, Beijing 100020, China

Phone 86-10-6532-1850 fax 86-10-6532-1851

TAIPE! OFFICE
Shen Hsiang Tang Sung Chiang Building 10F 146 Sung Chiang Road, Taipei, Taiwan
Phohe 886-2-2663-0010 Fax B86-2-2567-4677

SHANGHAI YASKAWA-TONGJIM & ECO,, LTD.
27 Hui He Road Shanghai Chine 200437
Phone 85-21-6531-4242 Fax 86-21-6553-6060

BEWING YASKAWA BEIKE AUTOMATION ENGINEERING CO., LTD.
30 Xue Yuan Road, Haidian, Baijng P.R. China Post Code: 100083
Phone 86-10-8233-2782 Fax 86-10-6232-1536

SHOUGANG MOTOMAN ROBOT CO., LTD.

7, Yongchang-North Street, Baijing Economic Technological Investmant & Development Area,
Baijing 100076, P.R. China

Phons 86-10-6788-0551 Fax B6-10-6788-2678

YASKAWA ELECTRIC CORPORATION

YASKAWA

MANUAL NO. SIE-C879-40.3B
Specifications are subject to changs without notice © Printed in Japan April 2000 969 @
for ongoing product modifications and improvements. 90-7®

687126 N

	Top cover
	Contents
	1.Introduction to Programming
	1.1 Programming Languages

	2.Hierarchical Structure of the Drawing System and Programs
	2.1 Types and Priority Levels of Parent Drawings
	2.2 Execution Control of Parent Drawings
	2.3 Hierarchical Structure of Drawings
	2.4 Functions

	3.Register Management Method
	3.1 Register Designation Method
	3.2 Data Types
	3.3 Types of Registers
	3.4 Symbol Management
	3.5 Upward Linking of Symbols and Automatic Number Allocation

	4.Basic Instructions
	4.1 Instruction with []
	4.2 Program Control Instructions
	4.3 Direct I/O Instructions
	4.4 Sequence Circuit Instructions
	4.5 Logical Operation Instructions
	4.6 Numerical Operation Instructions
	4.7 Numerical Conversion Instructions
	4.8 Numerical Comparison Instructions
	4.9 Data Operation Instructions
	4.10 Basic Function Instructions
	4.11 DDC Instructions
	4.12 Table Data Operation Instructions

	5.SFC Programming
	5.1 Configuration of SFC Program
	5.2 Execution of SFC
	5.3 SFC System Operation Registers
	5.4 SFC Flowchart
	5.5 SFC Action Box
	5.6 SFC Output Definition Time Chart
	5.7 Step Name Designation Method
	5.8 Taking Out System Step No.
	5.9 Precautions upon Preparation of SFC Program

	6.Table Format Programming
	6.1 Types of Table Format Programming
	6.2 Execution of Table Format Programs
	6.3 Constant Table (M Register)
	6.4 Constant Table (# Register)
	6.5 I/O Conversion Table
	6.6 Interlock Table
	6.7 Part Composition Table
	6.8 Constant Table (C Register)

	7.Standard System Functions
	7.1 Data Trace Read Function (DTRC-RD)
	7.2 Trace Function (TRACE)
	7.3 Failure Trace Read Function (FTRC-RD)
	7.4 Inverter Trace Read Function (ITRC-RD)
	7.5 Inverter Constant Write Function (ICNS-WR)
	7.6 Inverter Constant Read Function (ICNS-RD)
	7.7 CP-213 Initial Data Setting Function (ISET-213)
	7.8 Send Message Function (MSG-SND)
	7.9 Receive Message Function (MSG-RCV)
	7.10 Counter Function (COUNTER)
	7.11 First-In First-Out Function (FINFOUT)

	Appendix
	A. Types of Instruction Words
	B. List of Instructions
	C. Differences on Programming Between CP-9200H and CP-9200SH

